
www.manaraa.com

The Design of Distributed Systems |An Introduction to Focus�- Revised Version -Manfred BroyMax Fuchs Frank DederichsThomas F. Gritzner Claus DendorferRainer WeberInstitut f�ur InformatikTechnische Universit�at M�unchenPostfach 20 24 20, 8000 M�unchen 2
� This work is supported by the Sonderforschungsbereich 342 \Werkzeuge undMethoden f�ur die Nutzung paralleler Rechnerarchitekturen"

www.manaraa.com

CONTENTS iii
Contents1 Methods for System Development 11.1 Aspects of Systems and System Models : : : : : : : : : : : : : : : : 21.2 System Models and Speci�cation in Focus : : : : : : : : : : : : : : 41.3 Phases of Development in Focus : : : : : : : : : : : : : : : : : : : 51.4 How to read this Report : 92 Trace Speci�cation 102.1 Overview : 102.2 The Basic Structure: Streams : 122.3 Speci�cation of Actions : 132.4 Global Speci�cation : 142.4.1 Trace Logic : 152.4.2 Transition Systems : 172.5 Component-oriented Speci�cation : : : : : : : : : : : : : : : : : : : 192.5.1 Motivation : 192.5.2 Formal Treatment : 192.6 Timed Trace Speci�cation : 212.7 Proof Principles : 223 Functional Speci�cation 253.1 Overview : 253.2 Actions, Channels and Messages : 27

www.manaraa.com

iv CONTENTS3.3 Stream Processing Functions : 293.4 Speci�cation of Components : 303.5 State-oriented Functional Speci�cation : : : : : : : : : : : : : : : : 333.6 Speci�cation of Networks : 363.6.1 Equational De�nitions : 363.6.2 Compositional Forms : 373.7 Re�nement : 393.8 Timed Component Speci�cation : 433.9 Proof Principles : 444 Implementation 474.1 Overview : 474.2 An Applicative Language : 494.3 A Procedural Language : 544.4 Transformational Synthesis of Concrete Programs : : : : : : : : : : 575 Conclusion 616 Glossary 62

www.manaraa.com

AbstractFocus is a framework for the systematic formal speci�cation and development ofdistributed interactive systems and their components. Focus provides models,formalisms and veri�cation calculi for the stepwise speci�cation and development,transformation and veri�cation of such systems. Focus aims at the modular de-velopment and implementation of distributed interactive systems through severalabstraction levels by stepwise re�nement.

www.manaraa.com

1
Chapter 1Methods for SystemDevelopmentA (distributed) system consists of a family of interacting, conceptually or spatiallydistributed components. A system development method provides a framework fororganizing the stepwise construction of such systems. During the developmentprocess several descriptions are produced, that reect di�erent abstraction levels.Only if formal techniques are used these descriptions can be made as precise andunambiguous as necessary. Moreover, formal techniques allow to establish for-mal relationships between descriptions that belong to di�erent levels. A piece ofsoftware for a distributed system is a formal description in our sense, too.The system development method Focus that is outlined in the following provides:� formalisms for the representation of distributed systems at di�erent abstrac-tion levels,� advice at which level which system properties should be �xed,� concepts for the relationship between the di�erent levels,� techniques that support the transition from one level to another.In general, a development method identi�es activities to be carried out as well astheir objectives and their goal-directed organisation. Development activities arerelated to the following notions, which can be seen as development method \in thelarge":� analysis,� speci�cation,� motivation and explanation,� documentation,� validation,� transformation,� justi�cation,

www.manaraa.com

2 1. Methods for System Development� implementation,� veri�cation,� integration.In addition, a methodological framework provides techniques for the development\in the small", including hints how to analyse, specify and verify particular systemproperties at particular abstraction levels.Besides this, questions of organisation and management, of economics and team-work, of resources and technical devices etc. have to be handled. They are nottreated explicitly in the following. Moreover, the step from informal to formaldescriptions is not tackled here.Before entering into the presentation of Focus, let us �rst have a look at somemajor concepts underlying our approach.1.1 Aspects of Systems and System ModelsThere is no principal di�erence between the techniques of classical software en-gineering, i.e. techniques for the production of sequential software, and the tech-niques for the production of distributed systems. However, certain notions likesafety/liveness, assume/commit and system/environment are essential for distri-buted systems only. Moreover, distributed systems tend to be more complex andmore di�cult to develop than sequential software. In the sequential as in thedistributed case, a system design is organised as a sequence of increasingly de-tailed descriptions of the involved system components. The �nal result will be aconstructive description (usually a program) of those components that are to beimplemented.Systemmodels are formal, mathematical structures representing particular aspectsof a (real or planned) system while abstracting from others. Thus every systemmodel de�nes a certain abstraction level. In models for distributed systems oftenthe following aspects are represented in more or less detail:� Spatial distribution: a system can be \distributed" in space or conceptuallyin the sense that it is composed of subsystems called components. Actionsmay be associated with these components. States may be decomposed intosubstates that belong to these components.� Causality, interaction, synchronization: the execution of actions may dependon the previous execution of other actions (or on the system's state). This iscalled a causal dependency. Causal dependencies between actions that belongto di�erent components are called interactions. Interaction (for instance bymessage passing or by accessing shared storage) is the only way by which

www.manaraa.com

1.1. Aspects of Systems and System Models 3components can synchronize and coordinate their work while accomplishinga common task.� Concurrency: typically, some actions may be carried out independently andsimultaneously. Then they are called concurrent . When system runs arerepresented by (�nite or in�nite) action sequences, concurrency is modelledimplicitly by interleaving. In such a sequence concurrent actions may occurin any order. This way concurrency is reduced to nondeterminism. Alter-natively, if the system model allows to express (in a single run) that twoactions may be carried out independently, it is said that the model includesexplicit (\true") concurrency.� Nondeterminism: in most systems choices occur. A choice is called nonde-terministic if it cannot be inuenced from outside or if it depends on factorsnot explicitly represented in the system model.In principle distributed systems interact by asynchronous communication, syn-chronous communication (for instance by shared actions), or via shared states.Roughly speaking two complementary types of systemmodels can be distinguished:� action-oriented models (with or without shared actions),� state-oriented models.In action-oriented models a system is described by specifying the set of actionsit might exhibit and the causal relationships between these actions within systemruns (histories, traces). In a state-oriented model a system is described by spec-ifying its state space and its dynamic behaviour in terms of these states. Thetwo views indeed are dual: an action can be viewed as a relation on states, anddistinguished relations on states can be viewed as actions. Of course there aremodels combining both views.The overall behaviour of a system often depends on the behaviour of its environ-ment. Basically there are two ways to capture such dependencies. On the onehand one can explicitly include the environment into the system representation,thus considering it a particular system component. This leads to a closed systemview , where everything relevant is included. A closed system forms an isolatedcomplex that executes actions and assumes states without being inuenced what-soever. On the other hand one can refrain from including the environment into thesystem description explicitly, rather admitting the system to be inuenced fromoutside. This leads to an open system view . An open system reacts on environ-ment stimuli and these reactions in turn usually have impact on the environmentsbehaviour. In this sense every (sub)component of a system is an open systemagain.A description how an open system is inuenced by its environment is called an in-terface speci�cation. Particular actions can now be attributed to the environment,thus called environment actions, while others are controlled by the system, thus

www.manaraa.com

4 1. Methods for System Developmentcalled system actions. These two action sets are described in the syntactic partof an interface speci�cation. Accordingly, the semantic part is given by specifyingcausal relationships between system and environment actions in system runs. Ina state-oriented view we may similarly specify which parts of the state may bechanged by the environment and which parts may be changed by the system.There are several possibilities to derive an open system view systematically froma closed system view and vice versa. The step from a closed to an open view isessential, since it is the decisive step towards amodular description. Interface spec-i�cations of open systems (their semantic part to be precise) are sometimes writtenaccording to the assume/commit style. This style reects the fact that open sys-tems are usually not supposed to run in arbitrary environments but only in those,which ful�l certain assumptions. Moreover one often distinguishes between safetyand liveness properties. Technically, a closed system can be considered a specialcase of an open system, namely an open system with an \empty" environment.1.2 System Models and Speci�cation in FocusIn the following our development method called Focus is outlined. Focus isa (mainly) action-oriented model that admits the description of open as well asthe description of closed systems. Although it is geared towards systems thatcommunicate by asynchronous message passing, in principle shared state programscan also be modelled. At eh level of system runs concurrency is represented byinterleaving. The basic notion of Focus are �nite and in�nite sequences (calledstreams) of elements from given carrier sets. One can distinguish between twodi�erent types of streams: streams of actions and streams of messages. Since inour framework actions and messages are closely related, we will be very liberal inour terminology and notation.Streams of actions, which we call traces, are mainly used to model the behaviourof closed systems. Sets of traces are described by predicates or state transitionsystems. Predicates describe trace sets in a straightforward way. State transitionsystems are more implicit descriptions of trace sets.Streams of messages are used to represent communication histories of channels.We distinguish between input and output channels. These channels are the com-munication links between system components.The behaviour of a system component (as well as the behaviour of an open systemthat is connected to its environment by channels) is described in Focus mainlyby logical formulas specifying stream processing functions. A stream processingfunction maps tuples of input streams on tuples of output streams. In the liter-ature one can �nd many di�erent names for the entities we have called system

www.manaraa.com

1.3. Phases of Development in Focus 5components above, e.g. process, task, module. In the sequel besides componentwe sometimes use the term agent .In the beginning of a development process one is not concerned with internal detailsof a system component but rather with its interface. In an interface speci�cationall actions are considered which are relevant for the interaction between the com-ponent and its environment. In addition, the causal relationship between systemand environment actions are speci�ed (see section 1.1).In the implementation phases algorithmic languages are used to describe systemcomponents. This way components are represented by pieces of program code.The semantics of these code fragments is again given by sets of stream processingfunctions. This way we obtain a coherent formal framework basically using thesame notions.All in all there are several ways to specify system components in Focus:� by (sets of) traces of input and output actions,� by state transition systems,� by (sets of) stream processing functions,� by executable descriptions in terms of programming languages.All these formalisms reect di�erent abstraction levels and are thus used in di�er-ent phases during the development process. It is part of the methodological frame-work to provide means to go from a trace oriented speci�cation to a functionalspeci�cation and �nally to an executable descriptions in terms of an adequatealgorithmic language.1.3 Phases of Development in FocusSystem development in Focus is organized into a number of phases, namely (seealso �gure 1.1):� requirements speci�cation,� design speci�cation,� abstract implementation,� concrete implementation.In a formal requirements speci�cation the properties are formalized that are rele-vant for the envisaged system from the customers point of view. It is decisive toformulate and validate a requirements speci�cation carefully, since it is the �rstformal description of the customer's wishes and the starting point of the entiredevelopment process. Since it is derived from informal descriptions there is noway of formally verifying its correctness. Instead some evidence has to be given,for instance by a number of case demonstrations, that the formal speci�cation

www.manaraa.com

6 1. Methods for System Development

???

?
state oriented speci�cationspredicates on functionstechnique : functional speci�cation design stepsdeterminationinterfaceby:by:

essential methodsdesign phases and techniques

chapter 4.3concrete implementation � PLtechnique : procedural programmingchapter 4.2abstract implementation � ALtechnique : functional programming
chapter 3design speci�cationtrace logictransition systemtechnique : trace speci�cationrequirements speci�cation chapter 2transition to agentstransition to constructive programstransformation

informal description
transformationtransformation
and re�nement

Figure 1.1: Overview of Focus

www.manaraa.com

1.3. Phases of Development in Focus 7actually captures the informal requirements. Technically within a requirementsspeci�cation �rst all relevant data structures and are described by algebraic spec-i�cations, (for instance, using the algebraic speci�cation language Spectrum asdescribed in [BFG+92]). One may aim at a closed or an open system description.A closed view might be appropriate, if the interface between the envisaged systemand its environment is not clear yet. In this case, determining this interface isan important task of requirements engineering; after that, an open system view is�xed.In Focus a requirements speci�cation of a closed system is given by a trace speci-�cation. Such a speci�cation formally describes a set of actions and a set of traces.If the interface is clear right from the beginning, an open system speci�cation willbe the starting point, thus skipping the closed system description. A requirementsspeci�cation of an open system may be given again either by a trace speci�cationor by a functional speci�cation in terms of stream processing functions.Having �nished the requirements speci�cation, in a design speci�cation the step-wise re�nement of those system components which are to be implemented is thepoint of interest. This includes the introduction of input and output channels,often a transition from non-constructive to constructive speci�cations, and usu-ally a further decomposition of components into a number of subcomponents. InFocus a design speci�cation is given by a network of system components (agents)connected by channels. The �rst step in the design speci�cation is to determinethe exact number and use of communication channels for each of these compo-nents. Then every single component is modelled by a set of stream processingfunctions mapping the communication histories (i.e. streams) of the input chan-nels on the communication histories of the output channels. A set of functionsis used instead of a single function to model nondeterministic components and toenable underspeci�cation, leaving a spectrum of possibilities for the subsequentimplementation. Formally, a component speci�cation is a predicate on streamprocessing functions.The design speci�cation has to be veri�ed with respect tothe preceding requirements speci�cation. In particular, it has to be proved thatthe behaviour generated by the interaction of all components meets the overallrequirements speci�ed on the previous level.Descriptions of system components that are formalized in the design phase do nothave to be constructive. However, during the development process, new versionsof these speci�cations are derived, which are closer to an executable program. Forexample, introducing a notion of state often leads to constructive forms. However,for arbitrary design speci�cations there is no way to generate the system behaviouralgorithmically from these descriptions. Thus, a further development steps arenecessary.These steps to an abstract implementation. In Focus a particular applicativelanguage called AL is used to represent abstract programs. It is tailored to �t

www.manaraa.com

8 1. Methods for System Developmentin the general framework of streams and stream processing functions. In general,abstract programs are not tuned towards a speci�c machine. They leave room fora lot of optimizations and e�ciency increasing transformations. These aspects aretreated when a concrete program is derived from an abstract one.In a concrete implementation basically more e�cient representations of the datastructures are chosen and more e�cient algorithms are given. Data structuresand algorithms are formulated in a way tuned towards particular machines orprogramming languages. One way to obtain more e�cient programs (at least formany existing machines) consists in replacing applicative descriptions by proce-dural ones. Therefore Focus o�ers a procedural language called PL for concreteprograms. Like AL it is carefully embedded in the formal framework. The stepfrom abstract to concrete descriptions can be done using program transformationtechniques or by freely constructing the procedural version and then proving itscorrectness with respect to the applicative one.Up to now we only mentioned the standard way of system development in Focus.However, depending on the particular application, certain deviations may be ap-propriate: if the overall structure of the planned system is already given and theinterfaces of the components to be implemented are given in an explicit form, thedesign speci�cation is the appropriate starting level. The standard exit point ofour methodology is at the concrete implementation level. This is easily motivatedby the need for e�cient programs. Nevertheless an implementation in a certainconcrete language di�erent from PL can be required in the informal description.In this case the abstract implementation level is a suitable exit point.From our point of view it does not make sense to exit already before an abstractimplementation is gained when aiming at program development. Furthermore wedo suggest not to start the speci�cation process on levels lower than the designspeci�cation level, to keep the �rst formalisation abstract and comprehensible.All development steps can in general not be done in a purely automatic way.Accordingly, the step from a higher to a lower level cannot be carried out justby a machine. However, if done in an appropriate way, all steps can be formallyjusti�ed, which means that they can be veri�ed with respect to the previous levels.Of course, it is advisable to do both development and veri�cation hand in hand,since design and veri�cation steps in general are closely related.This brings us to the concepts of re�nement and veri�cation. Re�nement is thebasic notion of system development in Focus. In every re�nement step a givendescription of a system or of one of its components is replaced by a re�ned de-scription. One can distinguish several concepts of re�nement. In its simplest formwe have to show that the formulas describing the properties of the re�ned systemrepresentation imply the properties of the original one.All re�nement steps in Focus can in principle be done using classical predicate

www.manaraa.com

1.4. How to read this Report 9logic. However, it is often appropriate to apply more schematic rules. The Focusdevelopment method gives guidance to re�nement steps.Having obtained two di�erent system descriptions, where one is claimed to re�nethe other, we have to verify this claim. This means we have to show that there�ned version has all the properties required by the previous version. How such averi�cation is carried out strongly depends on the way in which the requirementsare described. For di�erent description styles di�erent veri�cation techniques haveto be used. Focus o�ers a number of speci�c proof principles.1.4 How to read this ReportThis report contains a description of the design method Focus. We includedsome small examples to illustrate key techniques. In particular, a simple messagetransmission system appears as a running example. Several case studies havebeen made with Focus; [BDD+92] contains a summary. We just mention two ofthem: the speci�cation of a lift controller in [Bro88a] and the development of animplementation of the so-called Stenning-protocol in [DW92].The structure of Focus is also mirrored in the organization of this report: tracespeci�cations (used for requirements speci�cations) are treated in chapter 2, func-tional speci�cations (used for design speci�cations) are dealt with in chapter 3,chapter 4 is concerned with implementation (both abstract and concrete imple-mentations). Chapter 5 presents conclusions.To improve the readability of the report we have marked certain paragraphs: thelabelA indicates essential features of our methodology, often recipes for itsuse. The paragraphs comprising theoretical aspects, which are not necessary for a�rst understanding, are marked with�.AcknowledgementWe gratefully acknowledge helpful discussions with our colleagues from the Son-derforschungsbereich 342.

www.manaraa.com

10 2. Trace Speci�cation
Chapter 2Trace Speci�cation2.1 OverviewTrace speci�cations describe the behaviour of distributed systems in a very abstractway. They are well-suited for formalising requirements.A A trace speci�cation describes the set of all runs of a distributed systemby sequences of actions (traces).Actions (sometimes also called events) constitute the key concept of trace speci�-cations. They represent the basic activities in a system, like \sending a message"or \pressing a button". Actions are thought to be atomic and instantaneous. Forthe present, we do not care where in a system a particular action occurs, whichentity generates it, and what its e�ect is.A trace represents a record of a run (history) of the system. This is more pictoriallydescribed in [Hoa85], p. 41:\Imagine there is an observer with a notebook who watches the processand writes down the name of each event as it occurs. We can validlyignore the possibility that two events occur simultaneously; for if theydid, the observer would still have to record one of them �rst and thenthe other, and the order in which he records them would not matter."As unbounded and in�nite behaviour is a typical phenomenon of distributed sys-tems, both �nite and in�nite traces are considered. Based on a possibly in�niteset of actions Act , the set of traces, i.e. streams of actions, is denoted byAct! = Act� [Act1;where Act� denotes the �nite traces, and Act1 the in�nite ones.Trace speci�cations provide action oriented models of distributed systems in con-trast to state oriented formalisms like, for instance, temporal logic. However, we

www.manaraa.com

2.1. Overview 11shall present means to support a state-oriented speci�cation style as well for certainsystem properties.We distinguish two di�erent kinds of trace speci�cations. The �rst is called globalspeci�cation. It gives a description of a system as an unstructured entity and doesnot take any decomposition into components into account. The second is calledcomponent-oriented speci�cation. Here a system is modelled as being composed ofseveral interacting components. In a component-oriented speci�cation there maybe two kinds of requirements: global and local requirements. A global requirementrefers to more than one component, possibly to the whole system. A local require-ment applies to just one component. A component is described by its input andoutput actions and its behaviour which is represented by a set of traces of inputand output actions. In the preceding chapter we have called this an interface spec-i�cation. Components communicate via input and output actions asynchronouslywith each other. Accordingly, a component may issue an output action (send amessage) and continue to work without waiting until the communication partner(s)is (are) ready to receive the message.Methodologically we �rst give a global speci�cation, which corresponds to a closedsystem view, and then switch to a component-oriented view, which correspondsto a closed system view. This usually includes some design steps. Starting from aglobal speci�cation is considered appropriate by various researchers in the �elds offormal speci�cation and requirements engineering (e.g. [CM88], [DHR90]), becausecustomers initially often do not state the obligation of each system component, butrather state what the global objectives of the whole system are.In the course of program development we use traces for the requirements speci�-cation. We proceed as follows:A The starting point are informal requirements by the customer.1. We �rst formalize the informal requirements in a global speci�ca-tion.2. We then produce a component-oriented speci�cation. It is basedon the global speci�cation but contains additional structuring in-formation.3. Design steps are then carried out to gradually localize all globalrequirements.The end point is a local speci�cation of each component, which maythen be further developed independently of each other.In the following we �rst present the basic structure that is underlying all formalmodels used in Focus: streams (section 2.2). After that we consider the speci�ca-tion of actions (section 2.3), then we illustrate the formalisms and methods usedfor the global speci�cation (section 2.4) and the component-oriented speci�cation(section 2.5). An extension of the trace formalism for describing time sensitivesystems is sketched (section 2.6). For a completely formal program development,

www.manaraa.com

12 2. Trace Speci�cationbesides speci�cation techniques also proof methods are necessary; we present proofmethods based on traces (section 2.7).2.2 The Basic Structure: StreamsThe data type of streams is fundamental in Focus. Streams appear as streamsof actions (shortly, traces) in trace speci�cations and streams of messages in func-tional speci�cations and programs. Given some set of items S (in Focus mainlyactions or messages), the set of streams over S is denoted by S! ; it is the unionof the set of �nite and in�nite sequences: S! = S� [S1.There are several basic operations and relations concerning streams (let s; t ; u bestreams and a; b; c be items):� h i denotes the empty stream.� hs1; : : : ; sni denotes the stream containing the elements s1; : : : ; sn .� ft(s) yields the �rst element of s, if s is not empty, otherwise it yields ?(\unde�ned").� rt(s) yields the stream in which the �rst element of s is deleted.� a & s denotes the stream in which a is pre�xed to s. If a is de�ned, i.e. a 6= ?,we have ft(a & s) = a and rt(a & s) = s.� s�t denotes the concatenation of s and t . If s is in�nite, then s�t just yieldss. We frequently write a�s for a & s and a�b for a & b & h i, thus identifyingitems with streams of length 1.� s v t denotes that s is a pre�x of t , which is formally expressed by 9u :s�u = t . The pre�x order is canonically (by pointwise application) extendedto tuples of streams and to functions producing streams as results.� a in s yields true exactly if a occurs in s.� #s gives the length of s, which may also be 1 (\in�nite").� a cs, the �lter operation, yields the substream of s that consists of a-items only, for instance, a cha; b; a; ci = ha; ai. As a generalization, the�rst operand may also be a set of items, for instance, fa; bg cha; b; a; ci =ha; b; ai.� Our methodology is based on certain mathematical concepts which we briey intro-duce in the following. For a detailed explanation of these concepts confer e.g. [LS87],from which the de�nitions below have been taken.

www.manaraa.com

2.3. Speci�cation of Actions 13De�nition 2.1 (partial order): A partial order is a pair (D ;v) with a setD and a relationv � D � D such that v is reexive (i.e. d v d for all d 2 D), antisymmetric (i.e. ifd1 v d2 and d2 v d1, then d1 = d2 for all d1; d2 2 D) and transitive (i.e. if d1 v d2 andd2 v d3 then d1 v d3 for all d1; d2; d3 2 D). 2De�nition 2.2 (least upper bound): Let (D ;v) be a partial order and S a (possiblyempty) subset of D . An element u 2 D is said to be an upper bound of S (in D),if d v u for all d 2 S ; u is said to be the least upper bound (lub) of S (in D), if u is theleast element of the set of all upper bounds of S in D . The least upper bound is denotedFD S or, shortly, FS , provided it exists. 2De�nition 2.3 (chain): Let (D ;v) be a partial order. A non-empty subset S of D iscalled a chain in D if d v d 0 or d 0 v d (or both) holds for every two elements d ; d 0 2 S .Said another way, S is a chain if the order relation `v' restricted to S is total. 2De�nition 2.4 (complete partial order): A partial order (D ;v) is a complete partial or-der (cpo) if the following two conditions hold:(1) The set D has a least element. This element is denoted by ?D or simply by ? (read`bottom').(2) For every chain S in D the least upper bound FS exists. 2� Streams with the pre�x relation v constitute a complete partial order with leastelement h i.� Streams may be speci�ed by axiomatic techniques using algebraic speci�cation,see [Bro89]. In�nite objects (like in�nite streams) are somewhat unusual in theframework of algebraic speci�cation. In fact, the notion of a model for an algebraicspeci�cation needs some slight modi�cation to overcome this di�culty: all sorts areinterpreted as complete partial orders.2.3 Speci�cation of ActionsA The �rst step in writing a trace speci�cation is to de�ne which actionsoccur in the system.Example 2.1 (A simple message transmission system):Throughout this paper we use the example of a simplemessage transmission systemto illustrate our methods. (For more complex examples we recommend [Bro88b]and [DW92]; see also [BDD+92] for a current summary of all Focus case stud-ies.) The message transmission system consists of a sender and a receiver whichare connected by a bu�er component called (transmitter). The following pictureillustrates this situation:

www.manaraa.com

14 2. Trace Speci�cationSender Transmitter Receiver-� send.mokerror -�trans.mfailreqThe sender may send messages to the transmitter; each send-message is acknowl-edged with either ok or error by the transmitter. If the acknowledgement is ok , themessage is stored in the transmitter, otherwise it is discarded. The receiver issuesrequests for messages to the transmitter, which are answered with the transmissionof a message or fail , if no message is available.Below we shall have a closer look at the requirements on this communicationsystem. At the moment we only state which actions may occur in our system.Given a set M of messages, we de�ne the actions of the system as follows:send actions: Send = fsend :m j m2M g;transmit actions: Trans = ftrans:m j m2M g;altogether: Act = Send [Trans [fok ; error ; fail ; reqg:� In more complex cases we suggest to use algebraic speci�cations to specify actionsets and data sets, such as the set M . 22.4 Global Speci�cationA global trace speci�cation describes the behaviour of a distributed system, nottaking any structuring into components into account yet. At this level, the systembehaviour is completely de�ned by its set of traces.Basically, we distinguish two di�erent styles of trace speci�cation. The �rst iscalled history-oriented . Here we impose restrictions on the complete histories(runs, traces) of the system. The second is called transition-oriented . Here thebehaviour is speci�ed by de�ning how the system evolves in a stepwise manner,starting from some initial state.A In Focus we may use two di�erent means to specify trace sets:1. trace logic to support a history-oriented speci�cation style,2. transition systems to support a transition-oriented style.These means may be combined: It is possible to describe some systemproperties by trace logic, and others by transition systems.

www.manaraa.com

2.4. Global Speci�cation 152.4.1 Trace LogicWe use the term trace logic for a (many-sorted) predicate logic in which we have aparticular sort for traces (or many trace sorts, if we want to distinguish di�erentkinds of traces, see the next section).A Using trace logic, the runs of a distributed system are characterized bygiving a logical formula with a free variable of sort Act! . This is calleda trace predicate. Every trace that satis�es this predicate represents arun of the system.Predicate logic o�ers su�cient expressiveness and is a well-understood subject.A pragmatic advantage is that it is in widespread use (at least in the computerscience, engineering and natural sciences community).There are two di�erent kinds of system properties: Some of them refer to all �nitepre�xes of a trace and have an invariant-like character whereas others apply to thetrace as a whole. The �rst are called safety properties; these are properties whoseviolation can always be detected after a �nite amount of time, i.e. by consideringa su�ciently large but �nite pre�x of a trace. Formally, a safety property is apredicate P that satis�es the following condition8t 2 Act! : (P(t), 8s 2 Act� : s v t) P(s)):This means that a trace of the system is safe with respect to the property P if andonly if all �nite pre�xes of the trace are safe.The second kind of properties are called liveness properties; in contrast to safetyproperties the violation of liveness properties can only be detected after a complete,possibly in�nite observation, i.e. by considering a complete possibly, in�nite trace.Formally a liveness property is a predicate P that satis�es the following condition:8s 2 Act� : 9t 2 Act! : P(s�t):Thus every �nite partial trace can be extended to become a trace that is correctwith respect to the liveness property P .Example 2.2 (The message transmission system described by trace logic):The allowed traces of our message transmission system are those that ful�l thepredicates S and L de�ned below:T = ft 2 Act! j S (t) ^ L(t)g:The safety requirements are verbally expressed as follows:� There do never occur more send acknowledgements (ok , error) than sendactions (send :m).

www.manaraa.com

16 2. Trace Speci�cation� There do never occur more transmit acknowledgements (trans:m, fail) thantransmit requests (req).� Only those messages are transmitted which were sent before and which wereacknowledged with ok ; moreover, the messages are transmitted in the sameorder as they were sent.Formally these requirements are captured by the following predicate S :S (t) � 8t 0 2 Act� : t 0 v t)#fok ; errorg ct 0 � #Send ct 0 ^#(Trans [ffailg) ct 0 � #req ct 0 ^msg(Trans ct 0) v success(msg(Send ct 0); fok ; errorg ct 0);where msg and success are de�ned as follows (let w be a stream of send - andtrans-actions, x be a stream of messages, y be a stream of ok - and error -actions):msg(h i) = h i;msg(send :m &w) = m &msg(w);msg(trans:m &w) = m &msg(w):msg �lters the messages that were sent or transmitted in a trace.success(x ; y) = h i; if x = h i _ y = h i;success(m & x ; ok & y) = m & success(x ; y);success(m & x ; error & y) = success(x ; y):Given a message stream x and a stream y of send-acknowledgements, success(x ; y)gives the message substream of x consisting of those messages that were acknowl-edged with ok . These are just those messages which are accepted by the transmit-ter.A It is considered one of the advantages of Focus that auxiliary functionsand operations can be introduced whenever needed. We recommend tointroduce a number of auxiliary functions and operations to keep aspeci�cation readable.The informal liveness requirements read as follows:� Send acknowledgements are not delayed for an in�nite amount of time.� Transmit acknowledgements are not delayed for an in�nite amount of time.� If an item is sent in�nitely often and it is requested in�nitely often, then itis �nally transferred from the sender to the receiver.These three verbal requirements are captured by the following predicate L:L(t) � #Send ct =1) #fok ; errorg ct =1 ^#req ct =1) #(Trans [ffailg) ct =1 ^#Send ct =1^#req ct =1) #Trans ct =1:

www.manaraa.com

2.4. Global Speci�cation 17Note that in the de�nition of S all �nite approximations t 0 of t were considered,whereas L is only concerned with the entire trace t . 2The example shows that a trace predicate can be composed from several moresimple predicates, each representing a particular requirement. This way an ap-propriate structuring of the speci�cation can be achieved. This is quite usefulfor requirements speci�cations: a trace speci�cation can easily be extended, newrequirements may simply be added, obsolete requirements may be deleted withoutchanging the rest of the speci�cation.2.4.2 Transition SystemsBy transition systems (also called automata or state machines), a model of adistributed system is given in terms of states and state transitions which are causedby actions. A state comprises a snapshot of the system, and state transitionsindicate how the system may evolve from one snapshot to the next by executingan action.Formally, a transition system is a tuple (Act ;State;!; Init) withAct a set of actions,State a set of states,! � State�Act�State; the transition relation,Init � State; the set of initial states.We also write � a! �0 for (�; a; �0) 2 ! . Given a transition system, its executionsare sequences of states and actions of the form�0 a1! �1 a2! �2 � � � ;where �0 is an initial state and �i ai+1�! �i+1 holds for all i . The sequence may bein�nite or �nite, in the latter case it ends with a state. Given such an execution,its trace is just a1�a2� � � �. The traces described by a transition system consistof the traces of all executions of the system. Obviously if a1�a2� � � � �an�1�an isa trace of a transition system, so is the trace a1�a2� � � � �an�1. Thus, in Focustransition systems are used to describe safety properties.Note that the states used here are global states. In a distributed system, stateswill be distributed; nevertheless, global states are a convenient conceptual toolin the development of a global trace speci�cation. Aspects of logical or physicaldistribution are only considered in the later phases of the development process.A In Focus, also a transition system may be used to describe traces. Itdescribes all traces that correspond to its executions.

www.manaraa.com

18 2. Trace Speci�cationTransition systems may conveniently be described by a notation in which statesare seen to consist of values of state components (\variables"). Transitions aregiven by a logical formula. An example illustrates this technique:Example 2.3 (The transmission system described by a state transition system):We may specify the safety properties of our message transmission system by atransition system. (In fact, for the sake of simplicity, we give a slightly morerestricted version of the safety properties: acknowledgements for send- and request-actions must be sent immediately.)Let the state space consist of all mappings� : fbuf ; acksg ! Msg� [Act�;such that �:buf 2 Msg� ^ �:acks 2 Act�.�:buf denotes the bu�er contents in state �, �:acks the list of acknowledgementsthat are due to be sent in state �. The initial state is speci�ed by the predicateinit :� � �:buf = h i ^ �:acks = h i;which expresses that the bu�er is empty initially and so is the list of the acknow-ledgements to be sent. The transition relation is speci�ed in the following way:� send:m! �0 �:full(�:buf)) �0:buf = �:buf �m ^ �0:acks = �:acks�ok ^full(�:buf)) �0:buf = �:buf ^ �0:acks = �:acks�error ;� req! �0 �:empty(�:buf)) �0:buf = rt(�:buf) ^ �0:acks = �:acks�trans(ft(�:buf)) ^empty(�:buf)) �0:buf = �:buf ^ �0:acks = �:acks�fail ;� ft(�:acks)! �0 �:empty(�:acks)) �0:buf = �:buf ^ �0:acks = rt(�:acks) ^empty(�:acks)) false:This speci�cation reveals some information about the internal structure of thetransmitter, namely that it has an internal bu�er for messages to be stored. Thebu�er may be full, which may lead to error-messages, if the sender tries to sendmessages in this case. This information cannot be derived from the logical speci-�cation of example 2.2. 2

www.manaraa.com

2.5. Component-oriented Speci�cation 192.5 Component-oriented Speci�cation2.5.1 MotivationA global speci�cation, seen as a requirements speci�cation of a distributed system,imposes requirements on the system as a whole. However, in many cases thereis already some structure information available on the requirements level. In ourmessage transmission example, the system was seen to consist of three components.It was also obvious what actions should be considered input or output to whichcomponent.An important point is that in a global speci�cation often requirements on thecomponent to be developed and its environment are stated. A particular goal ofthe component-oriented speci�cation is to separate the requirements on the com-ponent from the assumptions about the environment. This is done by explicitlystating the responsibility of the environment in terms of a number of assumptions.A correct implementation of the component is then required to satisfy the com-mitments whenever the environment satis�es the assumptions. This is called theassume/commit-style of a component speci�cation (see [LA90], [Pan90]).More generally, there may not be just one component and its environment butan arbitrary number of components. The environment may also be further struc-tured. The goal of component-oriented speci�cation is to gradually localize globalrequirements.2.5.2 Formal TreatmentLet us �rst look at the description of components by traces. A component isdescribed by its input/output behaviour, which is called its interface. The interfaceis described by de�ning input and output actions (the set of input actions mustbe disjoint from the set of output actions in order to distinguish inputs fromoutputs in a trace) and a predicate on traces of input and output actions. Thesepredicates are again described by trace logic and/or transition systems. Formally,a component is described by a tuple (I ;O ;C) with I \O = ? andC : (I [O)! ! ftrue; falseg:The whole system is composed of a set of components (I1;O1;C1); : : : ; (In;On ;Cn)where Oi \ Oj = ? for i 6= j . The disjointness condition ensures that outputactions can be uniquely assigned to the components. If the speci�cation models aclosed system view, (at least) one of these components represents the environment.Two components are understood to be (directly) connected, if an output action ofone component is an input action of the other. The composition determines the

www.manaraa.com

20 2. Trace Speci�cationpredicate Sys : (I1 [� � � [In [O1 [� � � [On)! ! ftrue; falseg de�ned bySys(t), 8i 2 f1; : : : ;ng : Ci((Ii [Oi) ct):Sys is a speci�cation where all requirements are localized . The �nal component-oriented speci�cation has to be of this form. On the other hand, the initialcomponent-oriented speci�cation consists of just global requirements. Betweenthese two extremes there will be mixtures of both:A A component-oriented speci�cation consists of local requirements on thecomponents and of global requirements on the system as a whole.Our method to derive (local) component speci�cations consists of the followingthree steps:1. We start from a global speci�cation. We identify a number of, say n, compo-nents and �x their inputs and outputs, I1;O1; : : : ; In;On resp., such that I1[O1 [: : : [In [On = Act and Oi \ Oj = ? for i 6= j ; this means that all actions ofthe global speci�cation are considered and each action is uniquely assigned to onecomponent as output action. (Actions that are not output actions of a componentare seen to be output of some unspeci�ed additional environment component. Inthis case the speci�cation models an open system.)2. We �x what (local) assumptions can be made about the environment - usuallythese assumptions are just some of the requirements of the global speci�cation -and we may also assign some requirements to some system components. Theremay still remain some global requirements that cannot be assigned to a speci�ccomponent. Accordingly a component-oriented speci�cation has the formG(t) ^ C1((I1 [O1) ct) ^ : : : ^ Cn((In [On) ct);with a global part G and local parts Ci (some of which may be true, expressingthat there is no local requirement for the i -th component yet).3. We gradually localize the components' requirements. This is done in a numberof re�nement steps: new global requirements G 0 and local requirements C 0i arederived, such that� G 0(t) ^ C 01((I1 [O1) ct) ^ : : : ^ C 0n((In [On) ct))G(t) ^ C1((I1 [O1) ct) ^ : : : ^ Cn((In [On) ct)� C 0i (t)) Ci(t), if i is the index of a component to be developed. This meanssome more restrictions on this component are imposed,� C 0i (t) , Ci(t), if i is the index of an environment component. This meansthe assumption about the environment remains the same,� G(t)) G 0(t). The global requirements are reduced.

www.manaraa.com

2.6. Timed Trace Speci�cation 21The requirements are completely localized when G 0(t), true. Then there are nomore global requirements.A In order to derive interface speci�cations for the components:1. Start with the global speci�cation and identify the componentsplus their syntactic interface.2. State the environment assumptions.3. Localize the components' requirements.The proposed requirements speci�cation method is described in more detail in[Web92]. In particular, in this thesis the methodological use of both global andcomponent-oriented speci�cations is motivated and the localization of require-ments is investigated in detail. An application of the method is can be found[DW92].Example 2.4 (Component structure of the message transmission system):Our system is structured into the components \sender", \transmitter" and \re-ceiver". The sender is responsible for send :m actions, the receiver is responsiblefor req and the transmitter is responsible for trans:m actions, and for fail , ok anderror . This is already illustrated by the picture above.In our simple example there are in fact no requirements on the sender and thereceiver: they may issue arbitrary messages at arbitrary times. Hence, the re-quirements S and L both apply to the transmitter. So in fact, the requirementsare already localized and the localization steps described above are not necessaryhere. LetI = fsend :m j m 2 M g [freqg;O = ftrans:m j m 2 M g [fok ; error ; failg:Then (I ;O ;TM) with TM � S ^ L is the component-oriented trace speci�cationof the transmitter. 22.6 Timed Trace Speci�cationSo far issues related to time and time sensitivity of systems have not been dis-cussed. Of course every physical system is carried out in a particular physicaltime frame. For many systems, this time frame is not important for modellingtheir behaviour. In some application areas (for instance process control in factoryautomatization), however, timing is of great importance. We will now sketch howthe trace formalism can be used to specify time sensitive systems.We model time ow (discrete time) via a global clock represented by an additionalaction. Therefore we introduce an actionX (\tick"), which occurs in a streamwhenno other action takes place at this point in time. We consider timed streams to be

www.manaraa.com

22 2. Trace Speci�cationelements of (Act [fXg)! for which in addition #t =1 holds. This requirementexpresses that the ticking of the clock never stops: their either appears a \real"action or there is a tick of the clock. We denote the set of timed streams by Act1X ,and the set of �nite partial timed streams by Act�X.To give just a avour of this approach, we formalize the requirement \after actiona occurs, at most N units of time elapse before action b occurs":P(s) � 8p 2 Act�X : p�a v s) 9q 2 Act�X : p�a�q�b v s ^#q � N :The action X can be used like any other action. This simple and naive way ofincorporating time nevertheless allows us to express discrete timing properties ofsystems conveniently in our formal framework.2.7 Proof Principles� This section contains advanced material, which can be skipped at the �rst reading.Proofs are used in system developments for two purposes. First, during a systemdevelopment descriptions occur which vary in their degree of abstractness. A moreabstract description may be re�ned by a more concrete one. The correctness ofre�nements generally is not obvious and therefore has to be proven.Secondly, reasoning about a formal speci�cation also requires proofs. As a formalspeci�cation determines a model or a model class, we are often interested whetherparticular properties hold for these models. These properties range from very gen-eral properties like consistency of the speci�cation (which means that there is atleast one model for the speci�cation) to speci�c properties concerning the partic-ular application. Reasoning about a trace speci�cation is especially important inthe area of a requirements speci�cation. In particular, it is the only way to get adeeper insight into an axiomatic speci�cation. In general, proofs may be carriedout in predicate logic, but there are also more speci�c proof techniques.Safety properties are usually proved by induction. For instance, by induction onthe stream structure:Proof Principle 2.1 (Induction on the stream structure): In order to show that asafety property S holds for a trace speci�cation P , we show that:(1) P(h i)) S (h i);(2a) 8s 2 Act�; a 2 Act : P(a�s) ^ S (s)) S (a�s) or, alternatively,(3b) 8s 2 Act�; a 2 Act : P(s�a) ^ S (s)) S (s�a):This proof technique is based on the fact that only �nite traces have to be con-sidered in the proofs of safety properties. (2a) and (2b) di�er in the way a �nite

www.manaraa.com

2.7. Proof Principles 23trace can be built up. (2a) appends at the beginning, (2b) at the end. It dependson the particular application which rule is most convenient to use. 2If transition systems are used in speci�cations, in principle, also classical predicatelogic proofs may be carried out, after the transition system is translated into logicalformulas. However, there are other useful proof principles, too. Safety propertiesexpressed by transition systems may be proved by an invariant technique:Proof Principle 2.2 (Proof by Invariants): In order to prove a safety property ex-pressed by a transition system, we may give a predicate Inv (invariant) over statesand �nite traces such that:(1) Init(s0) ^ Inv(s0; h i) ^ (Inv(s; t) ^ s a! s 0) Inv(s 0; t �a));(2) Inv(s; t)) S (t):It is easy to see that in this case the property S (t) holds for all traces t describedby the transition system. 2Proofs of liveness properties are in general more di�cult to carry out and hard tocategorize.Example 2.5 (Proof of a liveness property of the message transmission system):We claim that the property#Send ct =1^#req ct =1) #ok ct =1holds for all traces t that ful�l S (t) ^ L(t). This means that, if the sender sendsin�nitely many messages to the transmitter and the receiver in�nitely often tries toread messages from the transmitter, then in�nitely many messages will be receivedsuccessfully by the transmitter.Proof: We base our proof on two lemmas. Let t be a trace such that S (t) and L(t)holds.Lemma 2.1: For all k 2 N and all t 0 2 Act� it holds:t 0 v t ^#msg(Trans ct 0) = k) #success(msg(Send ct 0); fok ; errorg ct 0) � k :Lemma 2.2: For all k 2 N and all t 0 2 Act� it holds:t 0 v t ^#success(msg(Send ct 0); fok ; errorg ct 0) = k) #ok ct 0 � k :Both lemmas may easily be proven by induction on k . The �rst implies#msg(Trans ct) =1) #success(msg(Send ct); fok ; errorg ct) =1and the second:#success(msg(Send ct); fok ; errorg ct) =1) #ok ct =1:

www.manaraa.com

24 2. Trace Speci�cationNow we can deduce:#Send ct =1^#req ct =1) #Trans ct =1 [by L(t)]) #msg(Trans ct) =1 [Def. of msg]) #success(msg(Send ct); fok ; errorg ct) =1 [Lemma 2:1]) #ok ct =1 [Lemma 2:2]2We do not discuss the possibility to support proofs by machine based tools, al-though this way a lot support can be obtained.

www.manaraa.com

25
Chapter 3Functional Speci�cation3.1 OverviewIn the previous chapter the behaviour of a system was described by its set of pos-sible action traces. This leads to a very abstract view, well-suited for requirementsspeci�cation. We will now treat techniques for the design phase of the developmentprocess (see �gure 1.1). For this phase we use the paradigm of communicating sys-tem components. Such components are connected by directed channels to form anetwork. Each channel links an input port to an output port .On the trace speci�cation level, closed and open systems were distinguished. Thestarting point of this chapter is the interface description of an open system (tech-nically, a component-oriented trace speci�cation), where the actions are alreadymarked as input or output actions. A closed system can easily be converted intoan open one by marking the system actions of interest as outputs. In order to viewan open system as a component with several input and output ports, the tracespeci�cation's input and output actions have to be further partitioned into setswhich correspond to the individual ports.A functional component accepts input messages, processes them, and producesoutput messages. Our operational intuition is that every component has full con-trol over the messages that appear on its output ports, but no control over themessages that arrive on its input ports. Of course, it is assumed that all mes-sages are of the appropriate type for the channel they arrive on. A componentmay always send an arbitrary number of messages, which will be bu�ered on theconnecting channels. This means that we consider asynchronous communication.Communicating components still provide quite an abstract view of a system'sbehavior. Agents can be related to a variety of concrete computational units, suchas recursive de�nitions in a functional programming language, procedures in animperative programming language, processors in a multiprocessor machine, and

www.manaraa.com

26 3. Functional Speci�cationeven digital circuits in hardware design. In Focus, components are modelled bysets of stream processing functions. These functions operate on (tuples of) inputand output streams, which correspond to the respective communication channels.Stream processing functions may also be parameterized by (auxiliary) non-streamarguments. Remember that traces and streams are technically the same thing,namely �nite or in�nite sequences. However, in the context of our method, we usea trace to model a run of the whole system or a system component, and a streamto model the communication history of just a single channel.If the components described at the trace speci�cation level are not too complex,then it may be acceptable to replace every component-oriented trace speci�cationby one monolithic functional speci�cation. Sometimes, however, it is more conve-nient to specify a component not as a single processing agent, but as a networkcomposed of sub-component. The speci�cation and development techniques whichare presented in this chapter can be applied repeatedly to re�ne components thatway. The sub-components in a network are connected by internal channels, andcommunicate via internal messages, which are hidden from the environment. Atthis level of the development process, the structure of an network should onlydepend on the physical and/or logical structure of the system to be speci�ed.Implementation considerations should not be taken into account yet.A The design steps described in this chapter can be summarized as follows:1. Start with a component-oriented trace speci�cation of a singlecomponent.2. Partition the sets of input and output actions given by the tracespeci�cation into subsets corresponding to the component's inputand output channels.3. Specify the component in terms of (a network of) stream process-ing functions.4. Prove that this speci�cation re�nes the initial trace speci�cation.5. If the speci�cation is too abstract to be implemented, then givea more constructive speci�cation and prove that it re�nes the ab-stract one. Repeat this step if necessary.The �rst two steps deal with the classi�cation of actions and their associationwith certain channels. These points will be described in section 3.2. Steps 3 to 5refer to functional component speci�cations. In section 3.3 we will have a closerlook at stream processing functions, which model the behaviour of components.Then, in section 3.4, techniques for the functional speci�cation of components willbe explained. The important special case of state-oriented speci�cations will behandled in section 3.5. In 3.6 we will present techniques for the description ofcomponent networks. In section 3.7 we address re�nements, and �nally timingaspects (section 3.8), and the advanced topic of proof principles (section 3.9).

www.manaraa.com

3.2. Actions, Channels and Messages 273.2 Actions, Channels and MessagesIn this section we give some additional information on the �rst two design stepsdescribed above. Assume we are given a component-oriented trace speci�cation(see section 2.5), which consists of a triple (I ;O ;C), where I and O are disjointsets of input and output actions, respectively, and C is a predicate characterizinga set of traces over these actions. The set I may be empty, but O must not. Inthe following, we write A for I [O .A component is connected to its environment by a �xed number of input andoutput ports (corresponding to the channels). There must be at least one outputport, and, if the action set I is not empty, then there must also be at least oneinput port. The input actions in I are associated with the input ports and theoutput actions in O are associated with the output ports. Every action must beassociated with exactly one port. Formally, this means that the set I is partitionedinto p � 0 sets I1; : : : ; Ip, and the set O is partitioned into q > 0 sets O1; : : : ;Oq .The component is represented by functions of the functionalityI1!�� � ��Ip! ! O1!�� � ��Oq!:This functionality �xes the syntactic interface of a system component, stating thenumber of input ports, the number of output ports and which sorts of messagescan be sent over the individual ports.While the sets of input and output actions are already �xed on the trace speci-�cation level, it is an additional design decision to determine the \appropriate"number of input and output ports and the actions that are associated with theindividual ports. This decision is based on the designer's application dependentunderstanding of the overall system structure. The designer must also take intoaccount that putting two actions onto di�erent channels hides the informationabout the relative ordering of these two actions (at least if no timing informationis available, see the discussion of the non-strict fair merge in section 3.4).The association of actions to ports already carries some information, which canbe used to characterise the actions uniquely in an abbreviated notation. We callthis the transition from actions to messages. For example, consider the messagetransmission system introduced in the previous chapter. There, we had actionsof the form send :m and trans:m for every m 2 M . If we decide that send andtransmit actions should be associated with di�erent channels, then it is obviouslysu�cient just to refer to the message m appearing on one or the other channel.Knowing on which channel a messagem appeared is su�cient to determinewhetherit stands for the action send :m or trans:m.Formally, this means that we replace an action set Ik by some message set I 0k ,provided that there exists a total bijection between Ik and I 0k . The same can bedone for each set of output actions Ok . The elements of the sets I 0k and O 0k are

www.manaraa.com

28 3. Functional Speci�cationcalled messages. Since this way actions and messages can be converted into eachother, we will be very liberal in our terminology and notation. We always use theconcept which is most convenient. The reader can imagine that messages are justa notational shorthand for actions.For the rest of this chapter, we write Instreams for I1!�� � ��Ip!, and Outstreamsfor O1!�� � ��Oq!.The next step in the development, which will be described in detail in the followingsections, is to specify a component as (a network of) stream processing functionsof the overall functionality comp : Instreams ! Outstreams. For the internalchannels of such a network, actions and messages fromA and newly de�ned internalactions and messages may be used.Example 3.1 (Messages of the message transmission system):The actions in our message transmission system example were de�ned by (seeexample 2.1):Act = fsend :m j m 2 M g [ftrans:m j m 2 M g [fok ; error ; fail ; reqg:From example 2.4 we already know that I = fsend :m j m 2 M g [freqg are thetransmitters input actions and O = ftrans:m j m 2 M g [fok ; error ; failg are thetransmitters output actions.Furthermore, from the picture in example 2.1 we see that the output actions ok anderror should go to the sender, and trans:m and fail should go to the receiver; so itis appropriate to model the transmitter as a component with two output channels.The input is not split into two channels because the relative order of the incomingmessages is important. The component speci�ed here expects that the messagescoming from the sender and receiver are merged by the environment. The reasonfor this will be explained in section 3.4. We also perform a transition from actionsto messages as described above and obtain the following sets of messages:In = M [freqg;Out = M [ffailg;Ack = fok ; errorg:Hence the transmitter to be speci�ed has the functionality:trans : In! ! Ack!�Out!Performing several design steps we are going to develop a procedural program thatrealizes the transmitter. 2

www.manaraa.com

3.3. Stream Processing Functions 293.3 Stream Processing FunctionsA A stream processing function is a (pre�x continuous) function that oper-ates on (tuples of) streams and produces (tuples of) streams as results.A deterministic component can be represented to a single stream processing func-tion. For the moment, we restrict our attention to stream processing functions.The way components (including nondeterministic ones) are speci�ed is discussedin the next section.Our operational understanding that stream processing functions model interactingcomponents leads to some basic requirements for them. In particular, an interac-tive component is not capable to undo (take back) an output message that hasalready been emitted. This observation is mirrored by the requirement of mono-tonicity. It also reects our notion of causality: if some sequence of input messagesalready causes some output messages to occur, then a longer input must be causalfor at least the same, or more, output.� Formally, this requirement is expressed as follows:De�nition 3.1 (Monotonicity): Let (X ;v) and (Y ;v) be cpos (complete partial orders).A function f : X ! Y is monotonic, if for all x ; x 0 2 X we have that x v x 0) f (x) vf (x 0). 2� Besides the operational justi�cation of monotonicity, there is also a theoretical one.From theorems by Knaster and Tarski it is well known that monotonic functionsover cpos have a least �xed point. Recall that the set of streams M! together withthe (partial) pre�x order forms a cpo (see section 2.2). Since (the streams generatedin) feedback loops will be modelled by least �xed points, the use of monotonic streamprocessing functions is a necessity if we want to be able to give a semantics for functionalnetworks with feedback loops within the framework of domain theory.The second basic requirement for stream processing functions is that of continuity:a function's behaviour should be fully described by its behaviour for �nite inputs.Given some (possibly in�nite) input, the function's output for all �nite pre�xes ofthe input must successively approximate the function's total output. For example,this means that it is not possible to specify an agent that produces some outputonly as a reaction to in�nite input.� Formally, the requirement of continuity is expressed as follows, where FX standsfor the least upper bound of a chain (totally ordered set) X :De�nition 3.2 (Continuity): A monotonic function f : X ! Y is continuous, if for allchains X 0 � X the following equation holds Fff (x) j x 2 X 0g = f (FX 0). 2� Note that continuity implies monotonicity, but not vice versa. As it was the casewith monotonicity, continuity also has important theoretical aspects:

www.manaraa.com

30 3. Functional Speci�cation� Consider an input stream x = Ffxi j i 2 Ng, where the xi 's form a chain. Then theoutput of a continuous function can be determined either by f (x) or equivalentlyby Fff (xi) j i 2 Ng. This demonstrates that the behaviour of a continuousfunction is uniquely de�ned by its behaviour for �nite inputs.� It has been shown by Kleene that �x :f = Fn2N f n(?) for continuous functions f ,where f 0(x) = x and f n+1(x) = f (f n(x)) and �x :f denotes the least �xpoint off , i.e. the least element that ful�ls the equation f (x) = x . Building this chainof repeated function applications models the stepwise computation process thattakes place when feedback loops are considered (see [Kah74]).A Continuous functions are \well-behaved" functions in the sense thatthey properly model a stepwise computation process. In Focus, onlycontinuous functions will be considered as descriptions of components.In spite of the continuity requirement for individual stream processing functions,fairness and even more general liveness properties can be expressed in Focus.Fairness is not modelled as a property of a single function, but as a property of acomponent, which corresponds to a set of functions.While the behaviour of a component is represented by continuous stream process-ing functions, non-continuous auxiliary functions may also be used to support thespeci�cation. An example is the concatenation function �, which is non-monotonic(and therefore not continuous) in its second argument.3.4 Speci�cation of ComponentsA A component is modelled by a (non-empty) set of continuous stream pro-cessing functions. Such a set is represented by a predicate on functions.Each function from this set corresponds to one particular (deterministic)behaviour.Hence, a functional component speci�cation is given by a predicate:P : (Instreams ! Outstreams)! B ;that describes the following set of (continuous) stream processing functions:f f : Instreams ! Outstreams j P(f) ^ f is continuous g:The functionality Instreams ! Outstreams corresponds to the component's inputand output channels. Every function describes a potential input/output behaviourof the component stating how it reacts to all possible inputs. Obviously, if theabove set contains only one element, it stands for a deterministic component, sincein this case for any input the output is uniquely prescribed. In general, however,there will be more than one continuous function ful�lling a predicate P . In this

www.manaraa.com

3.4. Speci�cation of Components 31sense, a component speci�cation is a description of the properties the componentis required to have, expressed by a formula of predicate logic.Example 3.2 (A summation component):We specify a component operating on streams of natural numbers which, for everyinput, gives an output which is not less than the sum of the inputs received sofar. Let xi denote the i -th element of a stream x for 1 � i � #x . The predicateSum, which is a straightforward translation of the informal requirements, givesa speci�cation for such a component. Note that it is su�cient to describe thecomponent's behaviour for �nite input streams because of the implicit requirementof continuity.Sum1 : (N! ! N!)! B ;Sum1(f) � 8x 2 N!;n 2 N : #x = #f (x) ^(1 � n � #x <1) f (x)n � P1�i�n xi):Alternatively, the component Sum1 can also be speci�ed by stating that the inputand output streams have the same length and, for a �nite input stream, only thelast output is greater than or equal to the sum of the input elements received sofar. Together with the implicit requirements of monotonicity and continuity thisalternative speci�cation is equivalent to the speci�cation given above. Generally, itis a question of style to decide whether a more explicit speci�cation or an implicitone is preferable. 2Example 3.3 (A fair merge component):An example of an often-needed component is one that merges two input streamsinto a single output stream. As an additional constraint, we require the componentto be fair in the sense that it does not neglectone input in�nitely long. Suppose that I1 and I2 are disjoint. The speci�cation ofthe component Fair-Merge reads as follows:Fair-Merge : (I1!�I2! ! (I1 [I2)!)! B ;Fair-Merge(f) � 8x 2 I1!; y 2 I2! :#x = #y =1) x = I1 cf (x ; y) ^ y = I2 cf (x ; y):This is an example of a very implicit speci�cation, which explicitly restricts thecomponent's behaviour for in�nite input streams only. For �nite inputs, certainrestrictions for its behaviour follow from monotonicity and continuity. For ex-ample, it is easy to show that no output can ever appear which has not alreadybeen received as input. The assumption that this could be the case leads to acontradiction if the inputs are extended to in�nite streams. 2Example 3.4 (Functional speci�cation of the message transmission system):We now specify the transmitter component of the message transmission system bya predicateTrans1. In this predicate, the safety requirements exactly correspond tothose of the original trace description (see section 2.4.1, example 2.2). We could do

www.manaraa.com

32 3. Functional Speci�cationthe same with the liveness requirements, thus creating a certainly correct but notvery constructive speci�cation. However, as a �rst step towards an implementablecomponent, we replace the liveness requirements, stating that acknowledgementsmay be delayed an arbitrary but �nite amount of time, by certain �xed, �nitebounds. Moreover, we now explicitly introduce a �nite bound on the transmitterscapacity to store messages. The �rst bound (mds) represents the maximum delaybetween the sending of a message by the sender and the reply (ok or error) ofthe transmitter. The second bound (mdr) represents the maximum delay betweena request (req) issued by the receiver and the reply (a message m or fail) of thetransmitter and the third bound (mstor) represents the transmitter's capacity tostore messages. For example, a value of mstor = 1 means that the transmitter canstore at most one message at any given time.Trans1 : (In! ! Ack!�Out!)! BTrans1(f) � 9mds;mdr 2 N;mstor 2 Nnf0g :8x 2 In� : 9y 2 Ack!; z 2 Out! : f (x) = (y; z) ^#y � #M cx � mds +#y ^#z � #req cx � mdr +#z ^M cz v success(M cx ; y) ^#success(M cx ; y) �#M cz > 0) lt(z) 6= fail ^#success(M cx ; y) �#M cz < mstor) lt(y) 6= error :Here lt is the function dual to ft ; it gives the last element of a �nite, non-emptystream. Remember: In = M [freqg, Out = M [ffailg and Ack = fok ; errorg.The transmitter's behaviour is fully described by an explicit speci�cation of itsbehaviour for �nite input streams and by our implicit requirement of continuity.This implies that, because of the design decision to introduce �nite bounds, wehave managed to transform liveness into safety properties. We only need theadditional liveness assumption concerning the length of the output streams. 2We have already seen that a component speci�cation need not describe exactlyone stream processing function. In fact, all specifying predicates of the examplesabove are ful�lled by many functions. This is called underspeci�cation. It canbe used to represent nondeterminism. Given a nondeterministic component, thereare no means for its environment of controlling which of the allowed behaviourswill occur in an actual run of its implementation. In fact, we cannot even con-trol when the nondeterministic choices are made: they can be made during thedesign process, since a speci�cation may always be strengthened, for instance, toadd error handling capabilities or to implement the component in a deterministicprogramming language. The choice can also be made during the run of the im-plementation, where di�erent choices are possible for each individual run, and formultiple instances of the same agent.� It should be noted that the seemingly straightforward relational approach to nonde-terminism, where a nondeterministic agent corresponds to a relation on streams, is

www.manaraa.com

3.5. State-oriented Functional Speci�cation 33not su�cient, since it is not compositional. A relation in general does not convey enoughinformation about an component's behaviour. This has, for instance, been demonstratedby Brock and Ackermann in [BA81].The requirement of continuity is implicit in all component speci�cations, even if itis not explicitly stated each time. A component speci�cation P is called consistentif it does not describe the empty set, i.e. if it exists at least one continuous functionf such that P(f) holds. Usually we are only interested in consistent speci�cations.Sometimes, however, it is hard to tell, whether a given speci�cation is consistent.Example 3.5 (A non-strict fair merge component):The agent Fair-Merge as de�ned above does not guarantee that, given two �niteinput streams, every element of the inputs re-appears in the output stream. It iseasy to write down a speci�cation which seems to solve this problem:Non-Strict-Fair-Merge (f) � Fair-Merge(f) ^8x 2 I1!; y 2 I2! : #f (x ; y) = #x +#y:Unfortunately, this speci�cation is not ful�lled by any monotonic function: supposewe had a monotonic function f which performed a non-strict fair merge. Withoutloss of generality we assume that f (hai; hbi) = ha; bi. Because of monotonicity,f (h i; hbi) cannot be hbi, but any other result would violate the predicate givenabove. Thus Non-Strict-Fair-Merge is an inconsistent speci�cation in our sense.2It is indeed not possible to specify such a non-strict fair merge in a straightforwardmanner by predicates on stream processing functions. This is a general problemwith stream-oriented functional methods. The more elaborate formalism of inputchoice speci�cations, which is presented in [Bro90], is able to handle this case.Another, less sophisticated, solution (the inclusion of dummy messages similar totime ticks indicating the lack of input is presented in chapter 3.8.3.5 State-oriented Functional Speci�cationIn the section on trace speci�cations we distinguished between the history-orientedand the transition-oriented speci�cation style. In a similar way, we may use andcombine these speci�cation styles also in functional speci�cations. We have alreadypresented the general framework of stream-processing functions and methods forspecifying components using predicates on functions. In some of the examplesgiven in section 3.4 a component was speci�ed by relating complete input andoutput streams (for instance the summation component in 3.2 and the fair-mergecomponent in example 3.3); this corresponds to the history-oriented speci�cationstyle. On the other hand, a transition- or state-oriented functional speci�cationstyle is also possible. We shall now have a closer look on the methodological useof such a speci�cation style.

www.manaraa.com

34 3. Functional Speci�cationThere are two possible cases when a state-oriented speci�cation is useful. Firstly, itmay simply be di�cult to specify a component by a history-oriented speci�cation.Secondly, a state-oriented speci�cation can already look very much like an abstractprogram. Therefore the transformation of a history-oriented speci�cation into astate-oriented one is often an important design step. Of course, it must then beshown that the state-oriented speci�cation implies and thus re�nes the history-oriented one.A stream-processing function can | because of its monotonicity and continuity |be considered to be an abstract model of an agent which receives some input and,depending on its internal state, produces some output and changes its state. Thefunctional view is an abstraction of this operational model. For certain applica-tions, however, it is convenient to introduce an explicit notion of state and use itfor a transition-oriented speci�cation. This speci�cation method will be explainedin the following.Let us �rst consider deterministic components only, i.e. components that may bedescribed by a single function. For the moment let us assume for simplicity thatspecify a function f : I! ! O! with a single input stream and a single outputstream (this may easily be generalized to functions with more than one input oroutput stream). To specify f , we introduce a set State and describe f using anauxiliary functionh : State ! (I! ! O!);with a state parameter such thatf = h(init);where init is some particular initial state. Then, we specify h by giving formulasof the form:(1) P(s)) h(s)(h i) = o;(2) Q(i ; s)) h(s)(i&x) = o 0 � h(s 0)(x);where i 2 I is a single input, o 2 O! is a (possibly in�nite) output, o 0 2 O� is a�nite output, x 2 I! is an input stream, s 2 State is the \old" state, s 0 2 Stateis the \new" state, and P and Q are predicates (which can of course be omittedif they are identical to true). The stream o (usually) depends on s, and o 0 and s 0(usually) depend on i , x and s.(1) is the \termination case": if the input stream is empty and s ful�ls a certaincondition P , then o is output | and nothing more happens.(2) expresses the transition behaviour: if an input i and a state s ful�l a certaincondition Q , then h reads i in state s, outputs o 0 and enters state s 0. Obviouslythis \rule" may only be applied if the input stream is not empty.� In fact, a stream-processing function can be represented by a (not necessarily �nite)

www.manaraa.com

3.5. State-oriented Functional Speci�cation 35automaton with input and output. This formal relationship has been investigatedin [LS89].By h a deterministic component is speci�ed: we have described exactly one func-tion. The state-oriented speci�cation of nondeterministic components is treatedbelow.Example 3.6 (State-oriented speci�cation of the message transmission system):In order to achieve a simpler speci�cation, we now make the design decision toset the maximumdelay between send and request messages and the correspondingacknowledgements introduced in example 3.4 to zero: mds;mdr = 0. This impliesthat our new agent must give a reply as soon as new input arrives. However,we still have the freedom to choose an arbitrary storage capacity, mstor , for asubsequent implementation.Let M � be the state space: any sequence buf 2 M � represents the messages thetransmitter has currently stored. Initially no message is stored, thus h i is the initialstate. Now we give a state-oriented speci�cation of the transmitter component asfollows:Trans2(f) � 9h :M � ! (In! ! Ack!�Out!) :8x 2 In! : f (x) = h(h i; x) ^ H (h);H (h) � 9mstor 2 Nnf0g : 8x 2 In!;m 2 M :h(buf)(h i) = h i ^#buf < mstor) h(buf)(m&x) = (ok ; h i) � h(buf �m)(x) ^#buf = mstor) h(buf)(m&x) = (error ; h i) � h(buf)(x) ^#buf > 0) h(buf)(req&x) = (h i; ft(buf)) � h(rt(buf))(x) ^#buf = 0) h(buf)(req&x) = (h i; fail) � h(buf)(x):Here we use a generalization of the concatenation operation � to concatenate pairsof streams. 2The state-oriented speci�cation of a nondeterministic component is a slight gen-eralization of the procedure described above: we specify a set of initial states bygiving a predicate Init(s) on states, moreover, we specify the transition relationnondeterministically in the following way:(10) P(s)) 9o : R(o; s) ^ h(s)(h i) = o;(20) Q(i ; s)) 9s 0; o 0 : S (o 0; s 0; i ; s) ^ h(s)(i&x) = o 0 � h(s 0)(x):Here P ;Q ; i ; o; o 0; x ; s; s 0 are as above and R and S are predicates. R(o; s) ex-presses the range of possible outputs o in a state s, S (o 0; s 0; i ; s) expresses therange of possible outputs o 0 and next states s 0 for a given input i and a state s.Such a speci�cation can as before be seen as the description of a predicate H onfunctions: H :h � S1 ^ : : : ^ Sn , where S1; � � � ;Sn are formulas as in (10) and (20)above. The predicate H describes all functions with the speci�ed behaviour.

www.manaraa.com

36 3. Functional Speci�cationExample 3.7 (A state-oriented version of the summation component):The component Sum1 introduced in example 3.2 will now be speci�ed in a state-oriented way. The current state is just the sum of input elements received sofar. Sum2(f) � 9h 2 N! (N! ! N!) : 8x 2 N! : f (x) = h(0)(x) ^ H (h);H (h) � 8n;m 2 N; x 2 N! : h(n)(h i) = h i ^9k 2 N : h(n)(m & x) = (n +m + k) � h(n +m)(x): 2A The complete procedure is as follows:1. Embed the function to be speci�ed in an auxiliary function withan additional state parameter.2. Choose an appropriate state space for the auxiliary function.3. Specify the initial states.4. Specify the transition behaviour with several rules of the form (1)and (2) or their generalizations (10) and (20).There are alternative ways of writing state-oriented speci�cations. For example,one can use recursively de�ned predicates. See [Den91] for an example where arelatively large system has been speci�ed using this approach. There exist specialnotational conventions to denote state transitions, such as for instance the notationpresented in [Lam83]. This makes use of a state oriented speci�cation conceptpossible for complex systems.3.6 Speci�cation of NetworksA The de�nition of networks is the main structuring tool on the functionalspeci�cation level. There is no (semantical) di�erence in principle be-tween a single component and a network of components. A networkcan be de�ned either by recursive equations or by special compositionoperators.In Focus, networks of components can be represented by directed graphs, wherethe nodes represent components and the edges represent point-to-point, directedcommunication channels. It is a fundamental fact known as the Kahn principle(see [Kah74], [KM77]) that such networks of components can (semantically) beseen as components again. Hence, we are allowed to build an component from acollection of simpler components.3.6.1 Equational De�nitionsA In an equational de�nition, a network is de�ned by a set of mutuallyrecursive stream equations.

www.manaraa.com

3.6. Speci�cation of Networks 37Recall the summation component Sum2 from example 3.7. For the moment, werestrict ourselves to a deterministic version which always outputs the exact sumof the inputs obtained so far (choose k = 0 in the speci�cation of Sum2). Now,suppose that we do not want to build it from scratch, but instead employ analready implemented component add that adds two input streams element byelement. Then, the speci�cation can be rewritten as follows:Sum3(f) � 8x 2 N! : 9y; z 2 N! : f (x) = z ^ z = add(x ; y) ^ y = 0& z :Thus, a function f that satis�es the predicate Sum3 corresponds to the followingnetwork: -x add -z�0&y - f (x) = z ; where z = add(x ; y);y = 0& z :or equivalently:f (x) = z ; where z = add(x ; 0& z):� The semantics of an equationally de�ned network is the least function (with respectto the pre�x order) that ful�ls the de�ning equations for all input values. Thisinterpretation is consistent with an operational view of component networks connectedby asynchronous communication channels.3.6.2 Compositional FormsThe introduction of channel names (which is necessary for equational speci�ca-tions) is often helpful, but in some cases it may clutter a speci�cation. Dependingon the regularity of the network structure, the use of channel names may or maynot be advisable. Moreover, di�erent proof methods are used for the parallel andsequential composition of agents (here, equational reasoning is su�cient), and forfeedback loops (where induction arguments are required). It may therefore be ap-propriate to build a network of functional components using speci�c compositionoperators. Below we call a stream processing function with n input ports and moutput ports an (n;m)-ary function.De�nition 3.3 (Sequential (functional) composition): Let f be an (n;m)-ary func-tion, and let g be an (m; o)-ary function. Then f � g is the (n; o)-ary functionde�ned by:(f � g)(x) = g(f (x)): 2De�nition 3.4 (Parallel composition): Let f be an (n;m)-ary function, and let gbe an (o; p)-ary function. Then f k g is the (n+ o;m+ p)-ary function de�ned by:(f k g)(x1; : : : ; xn+o) = (f (x1; : : : ; xn); g(xn+1; : : : ; xn+o)) 2

www.manaraa.com

38 3. Functional Speci�cationDe�nition 3.5 (Feedback): Let f be an (n;m)-ary function, where n > 0. Then�f is the (n�1;m)-ary function such that the value of (�f)(x1; : : : ; xn�1) is theleast solution (with respect to the pre�x order v) of the equation:(y1; : : : ; ym) = f (x1; : : : ; xn�1; ym): 2The �-operator de�ned above always feeds back the mth output channel of a(n;m)-ary component. A generalized version of this operator is also possible.� Alternatively, the �-operator is often de�ned as follows, where �x :g denotes theleast �xed point of a function g (see section 3.3):(�f)(x1; : : : ; xn�1) = �x :g , where g(y1; : : : ; ym) = f (x1; : : : ; xn�1; ym) 2The example speci�cation Sum3 can now be rede�ned as follows, where id denotesthe identity function:Sum4(f) � f = � ((id k 0&) � add):It corresponds to same net as depicted above. Every network given in terms ofthe introduced compositional forms can easily be transformed into an equationalform.The compositional forms de�ned for stream processing functions can also be liftedto predicates on such functions in a straightforward way. This sometimes shortensthe notation since one need not write quanti�ers and sorts etc..De�nition 3.6 (Compositional forms for speci�cations): Let P and Q be predi-cates describing functional components. Then we de�ne:(P �Q)(f) � 9g; h : P(g) ^Q :h ^ f = g � h;(P kQ)(f) � 9g; h : P(g) ^Q :h ^ f = g k h;(�P)(f) � 9g : P(g) ^ f = �g: 2As an example, consider the following network Double, whose output for everyinput element is not less than twice the sum of the inputs received so far:- Split - Sum -- Sum - Add - Double = Split � (Sum k Sum) � Add ;where Split(f) � f (x) = (x ; x);Add(f) � f = add :Functional calculus provides a basis for reasoning about networks.

www.manaraa.com

3.7. Re�nement 393.7 Re�nementAs stated in section 1.3 re�nement is the basic notion of development in Focus.(see also [Bro92b] and [Bro92a])A In general, a re�nement relates two di�erent system representations that(possibly) belong to di�erent levels of abstraction.Re�nement steps are taken when going from one development phase to the next,for instance from the requirements speci�cation phase to the design phase, butalso within these phases.In chapter 2 we have already shown how global trace speci�cations are gradu-ally re�ned into component-oriented trace speci�cations. In design phase com-ponents are no longer represented by traces but by (sets of) stream processingfunctions. Hence, we technically have to re�ne a component oriented trace speci-�cation (I ;O ;C) into a functional component speci�cationP : (I1!�� � ��Ip! ! O1!�� � ��Oq!)! B ;where I = SIj and O = SOj (see section 3.2 for an explanation why I and O arepartitioned into subsets).In order to prove the correctness of such a re�nement step, it is necessary to relateboth kinds of speci�cations formally. This is done by de�ning the set of traces thatis generated by a stream processing function. The following de�nition states thatall outputs of a stream processing functions eventually appear in the trace (�rstconjunct of the de�nition), but that they may be delayed arbitrarily long (secondconjunct). This corresponds to the behaviour of an asynchronous communicationchannel.De�nition 3.7 (Traces corresponding to a function): Given a stream processingfunction f : Instreams ! Outstreams. The traces of f are de�ned by:Traces:f = f t 2 (I [O)! j (O1 ct ; : : : ;Oq ct) = f (I1 ct ; : : : ; Ip ct) ^8 t 0 v t : (O1 ct 0; : : : ;Oq ct 0) v f (I1 ct 0; : : : ; Ip ct 0) g;where, as usual, Instreams stands for I1!�� � �� Ip! and Outstreams stands forO1!�� � ��Oq!. 2Now the trace set corresponding to a functional component speci�cation can bede�ned straightforwardly:De�nition 3.8 (Traces corresponding to a component speci�cation): Let P be asabove. The traces corresponding to P are de�ned byTraces:P = S fTraces.f j P(f) ^ f is continuousg:

www.manaraa.com

40 3. Functional Speci�cationThus, Traces:P is the union of all trace sets that correspond to the continuousfunctions which ful�ll the predicate P . 2A component speci�cation is said to re�ne a trace speci�cation (I ;O ;C) if alltraces admitted by P are also admitted by C . Formally: P re�nes (I ;O ;C) i�Traces:P � ft 2 (I [O)! j C (t)g:Remember that we only considered total traces, which correspond to completecomputations. Hence all liveness properties are taken into account. In general Ponly generates a subset of the traces described by the trace predicate C .In fact, if P is inconsistent , i.e. if there is no continuous function ful�lling P , thenTraces:P is the empty set, which re�nes any trace speci�cation. Of course we areonly interested in consistent speci�cations.The obligation to prove that P re�nes the initial trace speci�cation is the con-necting link between the trace and functional speci�cation stages. See section 3.9for some advice on how such a proof can be done. For some cases, there existsyntactic transformation between trace speci�cations and corresponding functionpredicates. Examples for such an easy transition between these two formalismsare given in [DW92].Once a component is represented functionally there are several ways how it canbe re�ned. As explained in section 3.4 a functional component speci�cation de-scribes the properties the component is required to have. It can be re�ned byadding further requirements. Technically this means that the specifying predicateis strengthened. In our logical framework re�nement of component speci�cationsis therefore expressed by an implication. This is called behaviour re�nement. LetP ;Q : (Instreams ! Outstreams)! Bbe two component speci�cations. Then Q is a behaviour re�nement of P i�Q) Pholds. Any behaviour admitted by Q is also admitted by P but Q may be morerestrictive. It is important to notice that this re�nement notion is consistent withthe one introduced to connect the trace and the functional layer, since apparentlyQ) P impliesTraces:Q � Traces:P . Thus, if P re�nes a given trace speci�cationso does Q .Example 3.8 (Re�nement of the message transmission system):In the previous sections several versions of the transmitter component of the mes-sage transmission system have been developed. We gave these examples in orderto study di�erent speci�cation styles but also to demonstrate how a systematicdevelopment is performed in Focus. This is formally reected by the fact thatthe initial trace speci�cation of the transmitter (I ;O ;TM) (see example 2.4) is

www.manaraa.com

3.7. Re�nement 41re�ned by the �rst functional component speci�cation Trans1 (see example 3.4).It holds:Traces:Trans1 � ft 2 (I [O)! j TM (t)g:Moreover the �rst transmitter speci�cation is (behaviourally) re�ned by the second(see example 3.6), since the following formula is valid:Trans2) Trans1:These claims can be proved using the proof principles of section 3.9 below. 2Behaviour re�nement is the most basic re�nement notion for component speci�-cations. It only considers a component's input-output behaviour not taking intoaccount changes of the internal structure and the way the speci�cation is repre-sented. For instance, it might be a considerable step towards an implementationif a speci�cation P is replaced by a state-based speci�cation Q , although P and Qare equivalent with respect to their external behaviour, i.e. P , Q . This demon-strates that a re�nement step may bring a speci�cation in a more concrete formalthough the speci�ed external behaviour is not changed. We call this re�nementby reformulation. Semantically re�nement by reformulation is just a special caseof behaviour re�nement (and so are all other re�nement notions introduced furtheron).Example 3.9 (Re�nement by reformulation of the summation component):The summation component Sum1 speci�ed in example 3.2 is re�ned with respectto its representation by Sum2 speci�ed in example 3.7. The external behaviour isnot changed:Sum1 , Sum2:In Sum2 a state is introduced. This speci�cation is already executable. 2A way of re�nement typical for distributed systems consists of a change of theirconceptual or spatial distribution. Often a �rst speci�cation describes a systemas monolithic black box, only considering its external interface, as we do it inthe global trace speci�cation (see section 2.4). During the development processit is then split up into a network of interconnected components. We regard itas one of the main features of Focus that one can do such a decomposition atall development phases. In particular, in the design phase one can re�ne a givencomponent speci�cation P by a speci�cation Q that describes a network of (morebasic) components. This is called distribution re�nement . Of course, these morebasic components can be further re�ned, for instance, by reformulation or againby distribution re�nement.Example 3.10 (Distribution re�nement of the summation component):The speci�cation Sum3 introduced in section 3.6.1 represents the summation com-

www.manaraa.com

42 3. Functional Speci�cationponent by a (cyclic) network. It is a distribution re�nement of Sum2 and also a(real) behaviour re�nement, since Sum3) Sum2. 2All the re�nement notions introduced above have in common that they restrict thebehaviour or change the structure of a component but not its syntactic interface.In the rest of this section we now study a form of re�nement that also allows tochange the syntactic interface consisting of the number and type of the input andoutput channels. Hence, this form of re�nement is called interface re�nement .Technically, the interface of component corresponds to the functionality of thespecifying predicate: a predicateP : (I1!�� � ��Ip! ! O1!�� � ��Oq!)! Bspeci�es a component with p input and q output channels. When the interface ofQ is re�ned, one may change the numbers of input and output channels as wellas the type of these channels, i.e. the granularity of the communicated message.Consider an agent P that performs some manipulation on an input stream. If wewant to design an agent Q that ful�lls the same task in an environment, that issuesmessages of a more \concrete" datatype, we need to specify a transition A from theconcrete to the abstract level and a transition R from the abstract to the concretelevel. The agent Q is then an interface re�nement of P if R �Q �A behaviourallyre�nes P . Here � is one of the composition operators for speci�cations introducedin section 3.6.2. The following �gure shows the situation:- -PR AQ-? 66De�nition 3.9 (Abstraction and representation): Consider a tuple of streams oftype M on the abstract level and a tuple of streams of type M 0 on the con-crete level. Two component speci�cations A and R are called abstraction andrepresentation, respectively, i� the following conditions hold:� A has the functionality (M 0 !M)! B� R has the functionality (M ! M 0)! B� R � A = Id , where Id is the predicate that is only ful�lled by the identityfunction 2Based these notions we formally call a component Q an interface re�nement of acomponent P if there is an abstraction A and a representation R of appropriatefunctionality such that:(R �Q � A)) Pholds.

www.manaraa.com

3.8. Timed Component Speci�cation 43Example 3.11 (Interface re�nement of the summation component):Suppose we want to add integers by a hardware device. At a higher level of abstrac-tion, this is achieved by the summation components Sumi treated above. In orderto implement the adder in hardware, the integers of our abstract speci�cation areto be replaced by �nite sequences of bits, which are to be transferred sequentially.According to our de�nition we need a speci�cation R : (N! ! (B �)!) ! B ofthe representation and a speci�cation A : ((B �)! ! N!)! B of the abstraction.Here we give just the informal description that R converts a stream of integers toa stream of equivalent binary representations and A performs the converse opera-tion. Obviously, the equation R �A = Id holds. Suppose that we also have de�nedan agent Sum4. To prove that Sum4 is a correct implementation of, for instance,Sum2 it has to be shown that the following implication holds:(R � Sum4 � A)) Sum2 2In this example we have replaced a single action (transmission of an integer) byseveral actions (transmission of individual bits) but have not changed the numberof channels. One can also re�ne a speci�cation in a way that a single channelis replaced by a group of new channels. For example, we could implement ahardware summation component that is connected to its environment by 8 inputand 8 output channels.3.8 Timed Component Speci�cationSo far no explicit timing information is given in functional speci�cations. However,as we already pointed out in chapter 2, there are situations where the inclusion oftime aspects is necessary. One possible reason is that a time critical componentis to be speci�ed, where timing aspects are part of the component's functionality.A second reason is that the inclusion of time may lead to simpler speci�cations.This will be explained below.There are many possible models of time. Here, we consider a rather simple model:we assume a global discrete time. This means that in every time interval at mostone message can be sent or received. Each element of a timed stream represents the(single) communication event on a channel during one time interval. The situationthat no proper message has been sent during one time interval is modelled by aspecial element X (pronounced `tick'). Formally, let A be a set of actions, whichdoes not contain X. Then a timed stream is an element of (A [fXg)!.The model reects a global notion of time. In a timed environment, we haveto make sure that every component conforms to such a view. In particular, werequire that, as soon as the input stream is known for some time interval, theoutput stream is �xed for at least the same interval. This requirement is calledthe time progress property:

www.manaraa.com

44 3. Functional Speci�cationDe�nition 3.10 (Time progress property): Let f be a stream processing functionof the functionality f : Instreams ! Outstreams. For any tuple of streams,minlength (x1; : : : ; xp) is de�ned to be minf#x1; : : : ;#xpg. Then f has the timeprogress property if:8x 2 Instreams : minlength(f (x)) � minlength(x) 2Of course, for an agent speci�cation P we must prove that every f with P(f) hasthe time progress property. See section 4 of [BD92] for further information on thisclass of timed functions.Remember that we cannot de�ne a non-strict fair merge within Focus. Withtimed streams, this is no longer a problem, since total timed streams (these arestreams that correspond to a whole run of the system) are always in�nite. There-fore, the Fair-Merge agent speci�ed in section 3.4 is su�cient.Another interesting aspect is that the introduction of timing information usuallyleads to an introduction of nondeterminism. This is because nondeterminism isoften just introduced by the abstraction from time.3.9 Proof Principles� This section contains advanced material, which can be skipped at the �rst reading.An important method to prove properties of stream processing functions in generalis the principle of Noetherian induction.Proof Principle 3.1 (Noetherian induction): Let f : Instreams ! Outstreams bean arbitrary stream processing function, and let P be a total predicate (Instreams�Outstreams) ! B . Select an arbitrary Noetherian strict order � on Instreams(for example, take the strict pre�x order). To prove that P(x ; f (x)) holds for allx 2 Instreams, show that:8x 2 Instreams : ((8x 0 � x : P(x 0; f (x 0)))) P(x ; f (x))) 2In some cases, this method can be modi�ed to make it more usable: consider apredicate that holds for an in�nite stream whenever it holds for all �nite pre�xesof this stream. Such a predicate is called admissible. In particular, continuouspredicates (and safety predicates) are always admissible. For other classes of ad-missible predicates see, for example, [Man74]. Given an admissible predicate Pand a continuous function f , it must only be shown that P(x ; f (x)) holds for all�nite inputs x . This means that induction on the length of x can be used, whichis often easier to handle than full Noetherian induction. All in all, we get thefollowing modi�ed proof principle:

www.manaraa.com

3.9. Proof Principles 45Proof Principle 3.2 (Modi�ed Noetherian induction): To prove that P(x ; f (x))holds for all x 2 Instreams, show the following:(1) P is an admissible predicate.(2) f is a continuous stream processing function.(3) P(x ; f (x)) holds for all �nite x 2 Instreams. This is often proved by induc-tion on the structure of the input streams (see proof principle 2.1). 2Of course, besides Noetherian induction there are more speci�c induction principlesrelated to recursive declarations. We shall come back to these later on.In the previous section on re�nement we saw that we had to prove that a functionf satis�es a trace speci�cation in order to establish the connection between thetrace speci�cation and the functional speci�cation. This proof can often be struc-tured into two parts (provided that the function f never outputs in�nitely manyelements in response to a single input). Since our techniques are geared towardsasynchronous message passing, we can imagine that every channel is allowed tointroduce arbitrary (but �nite) delays. This is reected by the de�nition of theoperator Traces. Therefore, a trace speci�cation that is not closed with respectto �nite output delays can certainly not be re�ned by a functional component.On the other hand, once it is shown that the trace speci�cation does allow suchdelays, it su�ces to show that those traces of f are allowed in which no outputdelays occur. We will �rst de�ne the set of these traces:De�nition 3.11 (Normal form traces): The normal form traces of a stream pro-cessing function f : Instreams ! Outstreams are de�ned by:NF-Traces:f = f t 2 Traces:f j 8t 0 2 (I [O)�; i 2 I : t 0�i v t)f (I1 ct 0; : : : ; Ip ct 0) = (O1 ct 0; : : : ;Oq ct 0) gAn alternative, and more operational, characterization of normal form traces isthat immediately after every input all the outputs generated by this input appear.2The proof principle given above will now be summarized. See [Ded90] for a com-prehensive example.Proof Principle 3.3 (Re�nement of a trace speci�cation): Let (I ;O ;C) be acomponent-oriented trace speci�cation, and f be a stream processing function. Inorder to prove that f re�nes (I ;O ;C), show that (let A be (I [O)):(1) C is closed with respect to �nite output delays:8t 2 A!; t 0 2 A�; o 2 O ; i 2 I :(t 0�o�i v t ^ C (t))) (9t 00 2 A! : t 0�i �o v t 00 ^ C (t 00)):(2) C is true for all normal form traces of f : NF-Traces:f � ft 2 A j C (t)g. 2

www.manaraa.com

46 3. Functional Speci�cationProperties of equationally de�ned networks can be proved by exhibiting values foreach of the network's internal channels as well as output channels, such that thede�ning equations are ful�lled, in other words by exhibiting a �xed point of thenetwork. Such a set of values is generally not the least �xed point. If desired, thismust be established independently. Note that, for example, safety predicates aredownward closed, such that it is su�cient to show that some safety property holdsfor any �xed point (or, indeed, for any other value that is greater than the least�xed point).We now show some proof methods for networks de�ned by the composition opera-tors. For the parallel and sequential composition of functions, equational reasoningis the standard tool. Fixpoint induction can be used to prove properties of feedbackloops.Proof Principle 3.4 (Fixpoint induction for the feedback operator): Given an(n;m)-ary function of the form �f and an n-tuple of input streams (x1; : : : ; xn).Let g be a function such that g(y1; : : : ; ym) = f (x1; : : : ; xn ; ym). Then for ev-ery m-tuple of output streams (y1; : : : ; ym), if g(y1; : : : ; ym) v (y1; : : : ; ym), then(�f)(x1; : : : ; xn) v (y1; : : : ; ym). 2Other commonly used methods are folding and unfolding operations, and the fol-lowing application of Kleene's theorem, which is often helpful to establish safetyproperties.Proof Principle 3.5 (Computational induction): Given an (n;m)-ary function ofthe form �f , an admissible predicate P of appropriate type, and an n-tuple ofinput streams (x1; : : : ; xn). De�ne g by g(y1; : : : ; ym) = f (x1; : : : ; xn ; ym). Toprove P((�f)(x1; : : : ; xn)), it su�ces to show that, for all n 2 N:(8i < n : P(g i (h i; : : : ; h i)))) P(gn(h i; : : : ; h i)):Here the superscript i on g stands for function iteration. 2As for trace speci�cations the proof principles for functional component speci�ca-tions are an immediate consequence of well-known general principles form domain-theory and �xpoint theory.

www.manaraa.com

47
Chapter 4Implementation4.1 OverviewThe implementation phase covers the two �nal stages of a system development inFocus, namely:� the derivation of an abstract program, and� its transformation into a concrete program.A A major characteristic is the use of programming languages with fullyedged syntax and formal semantics.During the preceding development steps we described distributed systems by log-ical and functional means, in the language of mathematics so to speak. Thisresulted in considerable expressive power, notational exibility and allowed for thedirect use of a variety of mathematical methods and techniques. However, sincethe ultimate aim of the methodology is program construction, one eventually hasto switch over to representations that can be interpreted by a machine. Thisrequires unambiguity and therefore a precisely de�ned syntax, and executabilityand therefore the absence of non-algorithmic descriptive constructs. In this chap-ter two algorithmic (programming) languages are introduced, which ful�ll bothrequirements.The �rst one | AL | is an applicative language. AL is close to the functional styleused in the design phase (see section 1.3). In particular streams, stream processingcomponents and networks may be expressed. System descriptions in AL are stillquite abstract but already executable. They are therefore called abstract programs.The second one | PL | is a procedural language. It comprises the classical im-perative features like variables, assignments, loops, etc. and additional means forparallel programming and communication. Component networks can be repre-

www.manaraa.com

48 4. Implementationsented in PL, too. Once a system is described in PL no further change of theformalism takes place. Therefore we call PL-programs concrete.The applicative language is deliberately chosen to ease the step from functionaldescriptions (see chapter 3) to abstract programs. A functional system descriptionconsists of a number of communicating components interconnected by streams.Technically these components are denoted by predicates that determine sets of(continuous) stream processing functions. Streams are de�ned by (recursive)stream equations (see section 3.6.1). On the abstract program layer componentsare described in AL-syntax (here we use the keyword agent).A The re�nement relation between functional component speci�cationsand AL component declarations is provided by the denotational seman-tics of AL. It assigns a set of (continuous) stream processing functions toevery component declaration. Thus the notion of behaviour re�nementintroduced in section 3.7 can straightforwardly applied to this situation.Example 4.1 (Re�nement of a functional speci�cation by an AL declaration):To get an idea how a functional component speci�cation is re�ned by an ALdeclaration let us look at the following speci�cation:P : (N! ! N!)! BP(f) � 9g : P(g) ^ 8x 2 N!;n 2 N :f (n & x) = (2 � n)& g(x) _ f (n & x) = (3 � n)& g(x):It corresponds to the following AL fragment:agent P � chan nat i ! chan nat o :o � (2 � ft(i)23 � ft(i))&P(rt(i))end:Here i is the (local) name of the input stream of P and o is the (local) name ofthe output stream. The operator of (erratic) nondeterminism 2 admits straight-forward context free choice between two alternatives. So every element of i ismultiplied either by 2 or 3. 2We have already mentioned that abstract programs can be executed. Often, how-ever, they are not e�cient enough. During the previous development steps ef-�ciency aspects only played a minor role. We mainly tried to achieve a clearlystructured problem oriented solution. In the last phase, however, implementationdetails become increasingly important. One way to obtain more e�cient solutionsis to transform applicative programs into procedural ones. In our context thismeans to go from an applicative AL to a procedural PL program.A A distributed PL program constitutes the end point of a complete de-velopment process. The step from AL to PL programs may be carriedout by transformations.

www.manaraa.com

4.2. An Applicative Language 49Transformations are correctness preserving rules that relate pieces of AL code to(semantically equivalent) pieces of PL code. In section 4.4 some transformationrules are given. For the moment we do not know whether the rules developed so far(see [Ded92]) are complete in the sense that every AL program can be translatedinto a PL program. It is one of the future research topics to look for a generalstrategy to guide the transformation process. If such a strategy exists then theAL!PL transition could be automated, thereby shifting the methodological exitof a development process upward by one abstraction layer. At present neither ALnor PL are implemented1. In the long run we plan to implement both of them. Webelieve that AL and PL are in particular suitable to be implemented on paralleldistributed memory machines, e.g. hypercube architectures, since both languagesare based on asynchronous message passing communication. The channels of PLcan be mapped to the communication lines between the processors of the parallelmachines. Either directly (and statically) or by means of appropriate system calls(e.g. by mailbox commands of the MMK, the Munich hypercube program library,see [BL90]). Dynamic networks could be tackled by load-balancing.In the next two subsections the languages for abstract and concrete programsare described, mostly in terms of examples. Then the transformational style ofprogram development is explained (see [CIP85] and [CIP87]). Some sample trans-formation rules are given. A comprehensive treatment of these issues can be foundin [Ded92]. [Bro88a] contains a case study, where abstract and concrete programsare developed for a lift control module; in [DW92] components for a protocol aredeveloped.4.2 An Applicative LanguageA An abstract program consists of a number of component declarationsand a system of equations describing their interconnection.The paradigm underlying this representation is the same as on the previous layer(see section 3): a distributed system is modelled by concurrently working compo-nents that asynchronously exchange messages over unbounded, directed channels.The syntactic framework for abstract programs is provided by the applicative lan-guage AL. The language is derived from Ampl (\applicative multiprogramminglanguage") developed in [Bro86]. Conceptually it can be compared to functionallanguages like Haskell [HJW+91] or dataow languages like Lucid [WA85]. ALcontains means for the de�nition of stream processing functions, and moreoveradmits the de�nition of mutually recursive stream equations. Here is a simplenumerical AL-program:1In fact, there exists an implementation of Ampl, a predecessor of AL, on the SUN SPARC-station (see [Nue88]). Moreover some experiments concerning the implementation of AL on aINTEL hypercube using the Munich program library MMK are under way (see [Gor92]).

www.manaraa.com

50 4. ImplementationExample 4.2 (A simple AL-program):program factorial � ! chan nat o :funct fac � nat n! nat : if n = 0 then 1 else n � fac(n � 1) �;agent streamfac � chan nat i ! chan nat o :o � fac(ft :i)& streamfac(rt :i)end;agent streamadd � chan nat i1; i2 ! chan nat o :o � (ft :i1 + ft :i2)& streamadd(rt :i1; rt :i2)end;o � streamfac(s);s � streamadd(0& s; t);t � 1& tend factorial :First the program name and its input and output streams are de�ned. The ex-ample program is called factorial and has only one output stream of type nat. Itgenerates the stream 1! 2! 3! ... of all factorials in increasing order. 2In the headers of programs and components (for which the keyword agent is used)streams are declared by means of the keyword chan. This keyword (instead ofstr for instance) is motivated by the fact that streams represent communicationchannels and because we want to have a common syntactic interface for both theapplicative and the procedural language (see section 4.3).AL is a typed language. Every data object or stream belongs to some type, whichsemanticallymeans that it is an element of a particular cpo. In this sense chan natstands for N! , the pre�x ordered cpo of streams over N.There is a syntactic distinction between functions mapping data objects to dataobjects and components mapping data objects and/or streams to streams. Func-tions like fac are de�ned by expressions. They may have zero or more named inputparameters and yield exactly one output. With if-then-else-� and (mutually) re-cursive function calls the standard concepts of functional languages can be usedto de�ne them. However, AL is not a higher order language so that functions andcomponents can not be passed as arguments or results.A Components are modelled by (sets of) stream processing functions.They have zero or more named input parameters and one or more output param-eters. Therefore in component headers output parameters are named, too. Anycombination of data objects and/or stream parameters are allowed as inputs butonly streams are allowed as outputs. This restriction is imposed since AL compo-nents are intended to model system components that communicate via channels.On the other hand, admitting non-stream inputs makes programming more exi-

www.manaraa.com

4.2. An Applicative Language 51ble. The body of a component is built by equations just like the equational partof complete programs:agent �lter � bool b; chan bool bs; chan nat i ! chan nat o :o � if ft :bs = b then ft :i &�lter(b; rt :bs; rt :i)else �lter(b; rt :bs; rt :i) �end;agent switch � chan bool bs; chan nat i ! chan nat o1; o2 :o1 � �lter(true; bs; i);o2 � �lter(false; bs; i)end:Every equation has a number of stream identi�ers on the left hand side and anexpression of adequate arity and type on the right hand side. Every stream oc-curs at most once on a left hand side: output streams occur exactly once, whileinput streams never occur. Streams that are neither input nor output are calledinternal . Since output streams and internal streams may appear on both the leftand the right hand sides of equations, one can express sequential composition ofcomponents as well as feedback loops. This becomes obvious if the graphical repre-sentation of equational systems is considered. The factorial program, for instance,corresponds to the following net: 1&:0&:streamaddstreamfac? ?? ???os t
The component switch is graphically is represented as follows:�lter(true; :; :) �lter(false; :; :)? ?? ?? ?bs io1 o2 switchThe relationship between equations and nets can be made strictly formal (see[Bro86], [Bro88b]).

www.manaraa.com

52 4. ImplementationA Because the body of a component can again be seen as a network,AL supports hierarchical structuring of programs. Certain componentsthat appear as black boxes on one layer may be re�ned as networks ofmore elementary components on a lower layer. This is just distributionre�nement as de�ned in section 3.7.Note that components are restricted from being de�ned within the body of othercomponents. However, they can be called there. This way already �nished compo-nents can be used for the de�nition of new ones. Two di�erent types of recursionmay be used:� Stream recursion: the body of a component may contain (mutually) recursivestream de�nitions. As in the factorial -example this leads to networks withfeedback loops.� Functional recursion: a component may be called in its own body (seestreamfac or streamadd above). Since this call can be unfolded arbitraryoften (during run time), this kind of recursion leads to in�nite networks.Conceptually stream recursion can be viewed as recursion in time (a particularcomponent is used more than once for items that are fed back), while functionalrecursion corresponds to recursion in place (functional recursive components canbe unfolded and thereby lead to a number of di�erent instances of the same compo-nent working in parallel). Often it is a particular development goal to transforma functional recursive component into a stream recursive one, thus replacing apotentially in�nite network by a �nite one.Since AL comprises the �nite choice operator 2, one can de�ne nondeterministicexpressions, (AL-)functions, components and programs. The denotational seman-tics of AL relates any of these syntactic categories to sets of continuous functions.� Consider, for instance, the following component declaration:agent f � chan nat i ! chan nat o :ESend:Here, ES is a system of equations that may contain nondeterministic right hand sides.The semantic mapping F gives a set of stream processing functionsF[[agent f � ::: : ES end]] � N! ! N!;which is taken to be the meaning of f .This approach is consistent with functional component speci�cations. It avoidsthe well-known anomalies (see [Kel78], [BA81]) that appear when a relationalsemantics is used. (Such a semantics assigns relations or set valued functions tonondeterministic declarations.)

www.manaraa.com

4.2. An Applicative Language 53� Based on the semantic mapping F it is easy to de�ne when an AL componentdeclaration re�nes a functional component speci�cation: letP : (Instreams ! Outstreams)! Bbe a component speci�cation. Then an AL component declaration p re�nes P i�:F[[agent p � Instreams ! Outstreams : ES end]] � ff j P(f)g:Obviously, when going from P to p the speci�cation formalism has changed, but wemight also constrain the behaviour.Example 4.3 (The message transmission system described in AL):The functional version of the transmitter presented in example 3.6 can be imme-diately represented as an AL-component. Letqueue � M �be the datatype of �nite streams (sequences) overM . The component transmitterlooks as follows:agent transmitter � nat mstor ; chan in i! chan ack a; chan out o :(a; o) � h(mstor ; h i; i)end:mstor is the parameter that speci�es the maximumnumber of messages the trans-mitter is able to store. The auxiliary function h is de�ned below:agent h � nat k ; queue q; chan in i! chan ack a; chan out o :(a; o) � if ft :i = reqthen if #q > 0 then (y; ft :q&z) else (y; fail&z) �else if #q < k then (ok&y; z) else (error&y; z) ��;(y; z) � if ft :i = reqthen if #q > 0 then h(k ; rt :q; rt :i) else h(k ; q; rt :i) �else if #q < k then h(k ; q � ft :i ; rt :i) else h(k ; q; rt :i) ��end:Note that h has an additional state parameter: q represents the queue of currentlystored messages. In each recursive call it is updated appropriately. Initially q is setto h i, which represents the empty queue. This example also demonstrates the closerelationship between state-oriented functional speci�cations and AL-components(see example 3.6). In fact, transmitter re�nes (in the sense de�ned above) thefunctional component speci�cation Trans2. 2

www.manaraa.com

54 4. Implementation4.3 A Procedural LanguageA According to our terminology, a program is called \concrete" if there isno further re�nement necessary (in particular no rewriting into anotherformalism). Methodologically a concrete program constitutes the �nalresult of the development process. It depends on the designer (and hiscustomer) whether a program is considered concrete. In this section asan example a procedural language is proposed for the representation ofconcrete programs.While on the applicative layer distributed systems were represented by streamprocessing components and recursive stream equations, on the procedural layer wehave procedures and channels. The procedural language PL used here comprisesthe usual imperative constructs:� variables,� assignments,� while loops,� procedural components (procedures).Moreover it is equipped with means for communication and concurrency:� components can be executed in parallel,� channels are used to establish directed point to point communication,� they are accessed by send and receive commands.Let c be a channel, x be a variable and E be an expression (c, x and E ofcompatible type). Then c?x is the command by which the �rst element of the inputchannel c is removed and assigned to x . If c is empty then the execution of c?x isdelayed until an item becomes available. This implies that the execution may bedelayed forever, if that item never appears. The command c!E �rst evaluates E andthen sends the result to the output channel c. Provided that the evaluation of Eterminates c!E is never delayed. This models asynchronous communication. (Thusthe meaning of ? and ! in PL should not be confused with the meaning of theseoperators in CSP (see [Hoa85]) where they stand for synchronous communication).A In PL two types of components can be distinguished. The �rst type iscalled sequential.The body of a sequential component consists of a (sequential) statement sometimespreceded by variable declarations. The procedural version of the �lter -component

www.manaraa.com

4.3. A Procedural Language 55from section 4.2 is a sequential one.agent �lter � bool b; chan bool bs; chan nat i ! chan nat o :var bool x ; var nat y;loop bs?x ; i?y;if x = b then o!y else skip �poolend:Here loop stat pool denotes the in�nite execution of the statement stat , i.e. anonterminating loop.A Components belonging to the second type are called hierarchical orparallel. The body of an hierarchical component consists of a numberof parallel component calls.Syntactically these calls are represented by equations. Thus an hierarchical PLcomponent looks very much like an AL component:agent switch � chan bool bs; chan nat i ! chan nat o1; o2 :i1; i2 � split(i);bs1; bs2 � split(bs);o1 � �lter(true; bs1; i1);o2 � �lter(false; bs2; i2)end:Here split is an component that copies every input message to both of its outputchannels. Every equation in the body of switch stands for an component callgenerating a new instance of the called entity. Channel identi�ers on the right handsides denote input channels, those on the left hand sides denote output channels.Parallelism is expressed by simple juxtaposition of equations. Since recursion ispermitted for PL programs, new channels can be introduced and dynamicallychanging networks can be modelled. Here a channel identi�er occurs at most onceon the left hand side of the equations and at most once on the right hand side.This distinguishes PL from AL where (stream) identi�ers may occur twice or moreon the right hand sides. At this point the di�erence between channels and streamsbecomes obvious.A Conceptually the (denotational) semantics of AL and PL are quite sim-ilar. In both cases the meaning of components is described by sets of(continuous) stream processing functions.� A special treatment is needed only for sequential components that are de�ned bystatements. Semantically a statement corresponds to a set of state transformations thatchange the contents of its input and output channels. (see [BL91]). By suitable abstrac-tion (see [Ded92]) every state transformation � can be related to a stream processingfunction f� . So we obtain a coherent functional framework.

www.manaraa.com

56 4. Implementation� The re�nement relation between AL and PL is obvious: a PL declaration q re�nesan AL declaration p, i�F[[agent q � Instreams ! Outstreams : STAT end]]�F[[agent p � Instreams ! Outstreams : ES end]]The same de�nition applies if p and q are both from AL or both from PL.On both the applicative and the procedural layer communication is asynchronous.Channels can be viewed as unbounded bu�ers accessed by (non-blocking) sendand (blocking) receive commands. The decision to use just these two commandsfacilitates the semantic de�nitions. On the other hand it restricts the expressivepower of the language. For instance a fair (non-strict) merge can not be expressedin PL (nor in AL; see [Bro86]). Obviously one can think of various enhancementsovercoming this constraint. One possibility would be to introduce a polling state-ment that tests whether a channel is currently empty, yielding true in this case andfalse otherwise. Another option would be to introduce a disjunctive wait commandallowing an agent to wait for two channels at the same time taking the �rst itemthat arrives. In fact both constructs can be seen as timing features; they allowfor the description of agents that show time dependent behavior. This heavily in-uences the semantic description. When having to choose between simplicity andexpressiveness we vote for the �rst and thus decide not to include such constructs.Example 4.4 (The message transmission system described in PL):The procedural version of the transmitter, described as AL-component in the pre-vious section, looks as follows:agent transmitter � nat mstor ; chan In i! chan ack a; chan out o :var in x ;var queue q := empty;loop i?x ;if x = reqthen if #q > 0 then o!ft :q; q := rt :q else o!fail �else if #q < mstor then o!ok ; q := q � x else o!error ��poolend:Note that we do not need an auxiliary component h here, because we can store theincoming messages in a variable of the type queue. The transmitter is describedas a sequential component. 2

www.manaraa.com

4.4. Transformational Synthesis of Concrete Programs 574.4 Transformational Synthesis of ConcreteProgramsProgram transformation is a highly formalized method of software development.By applying only semantics preserving transformation rules (which are rules thatpreserve an implementation relation or even semantical equivalence) to a givenspeci�cation a program is derived that is correct by construction.Since the early seventies various transformation calculi have been developed for se-quential programs (see, for instance, [BD77] or [CIP85], an overview can be foundin [Fea87]), but only recently has the transformational approach been applied toconcurrent programs (see [Bar85], [Bar88], [KB+90a], [Old91]).In Focus transformation rules are mainly applied in the implementation phase inorder to deduce a concrete program from an abstract program. This restricted useis due to the following reasons:In the early development phases the planned system is described at a quite abstractlevel. Many design decisions are necessary to derive more concrete representations.Since these decisions are rather speci�c and problem dependent, it will be di�-cult to (re-)use standard transformation rules. Furthermore, the application oftransformation rules requires a precisely de�ned syntactical frame. In Focus sucha frame is only �xed for the implementation phase. On the previous layers wedeliberately choose a more liberal style of notation (which nevertheless is strictlyformal). At the beginning of a system development we try to achieve an ade-quate mixture of top-down steps (development steps) and bottom-up steps (proofsteps), while on the later stages the emphasis is shifted towards the top-down-stepsconducted in the form of program transformation.A In the sequel some basic rules for the transformation of applicative (ab-stract) programs into procedural (concrete) ones are given. Actuallynot all transformations really relate applicative components/programsto procedural components/programs. Some of them are applied to ap-plicative components and yield applicative components again. Method-ologically one applies the later group of rules to a given componentde�nition until it is in a suitable form to admit the use of the �rstgroup.Every rule has the form:IO Cwhere I and O are program fragments and C is an application condition. I iscalled the the input template, O is called the output template (see [Par90]). A ruleis correct, when O is a re�nement of I , whenever C holds.

www.manaraa.com

58 4. ImplementationAs described in the previous section the re�nement relation is formalized by setinclusion. Thus a rule is correct ifC) F[[O]] � F[[I]]:Every transformation rule given in the sequel is correct in this sense and thereforerepresents a re�nement. Correctness proofs can be found in [Ded92]. Transfor-mation rules can be applied locally, i.e. to small fragments of complete programs.Here we can again take advantage from the similarity between AL and PL.A Although both languages are treated distinctly in the previous sectionsthey can be integrated into a wide spectrum language (see [CIP85]).So mixed forms become possible, which nevertheless are syntacticallycorrect and semantically sound.We now start with the most fundamental transformation rule relating (functional)recursive components to iterative ones:� rule: recursion-to-iteration Iagent f � chan v i ! chan w o :o � F [ft :i]& f (rt :i)endagent f � chan v i ! chan w o :var v x ;loop i?x ; o!F [x] poolend:The form of recursion displayed by f is called tail-recursive-modulo-cons, wherecons stands for the stream constructor & . In the realm of stream processingthis kind of recursion plays the same role that ordinary tail-recursion plays forsequential programs (see [BW81]). The above rule basically uses the fact that &is non-strict in its second argument, i.e. E&S can partially be evaluated withoutevaluating the stream expression S on the left. Operationally this means that the�rst input item can be processed before the second one arrives, thus admitting aloop construct on the procedural layer. A lot of similar agents can be transformedby rules like this, for instance:

www.manaraa.com

4.4. Transformational Synthesis of Concrete Programs 59� rule: recursion-to-iteration IIagent f � u p; chan v i ! chan w o :o � if B [p; ft :i] then F [p; ft :i]& h ielse G[p; ft :i]& f (T [p; ft :i]; rt :i) �endagent f � u p; chan v i ! chan w o :var u x := p;var v y;i?y; while :B [x ; y] doo!G[x ; y]; x := T [x ; y]; i?yod;o!F [x ; y];close.oend:Here the role of the object parameter p becomes apparent. It is used as localvariable that is updated appropriately in each cycle. The ft-rt combination of theapplicative layer corresponds to the i?y command on the procedural layer sincethis assigns the �rst item of i to y and removes it.Equationally de�ned components,agent f � chan u i ! chan u o :s1 � f1(t11; :::; t1m1);:::;sn � fn(tn1; :::; tnmn)end;where o 2 fs1; :::; sng; ft11; :::; tnmng � fi ; s1; :::; sng and every tij occurs exactlyonce on a right hand side, can immediately be seen as PL components.Thus one can bring applicative agents into procedural form by simply transform-ing the equations in their body. General stream expressions on the right handside of AL-equations must be substituted by component calls of the above type.Various rules are necessary for this purpose (see [Ded92]). They can be obtainedas particular combinations from the following basic network transformation rules:� folding/unfolding of equations� folding/unfolding of agent de�nitions,� introduction of auxiliary streams etc.Due to lack of space only one rule is presented here:

www.manaraa.com

60 4. Implementation� rule: unfolding of stream equationsagent f = chan v i ! chan w os1 � S1; :::; sk � Sk ; :::; sl � Sl ; :::; sn � Snendagent f = chan v i ! chan w os1 � S1; :::; sk � Sk [Sl=sl]; :::; sl � Sl ; :::; sn � SnendUsing network transformation rules only leads to quite schematic concrete pro-grams. In particular the recursive structure of the applicative program is entirelytransferred to the procedural version. Often one wishes to avoid this, for instance,to admit a static mapping of processes to processors. Then rules must be usedthat realize a dynamic network on the applicative layer by a static network on theprocedural layer. This can be done by replacing functional recursion by streamrecursion. For the moment it is not clear weather this is always possible. Forspecial cases rules can be found in [Ded92].Once the step from AL to PL has been made further rules can be applied in orderto optimize the procedural program obtained by then. Here one can make use ofmany standard transformations for procedural programs known from the sequen-tial case. But also more speci�c rules can be applied, for instance, certain feedbackloops may be replaced by local variables.In general, the application of a transformation rule requires three separated activ-ities. First a rule is chosen and (syntactically) matched with the agent/programunder consideration. Then the application conditions is checked and �nally therule is applied by substituting the (matched) input template by the output tem-plate. All these activities can be supported by appropriate tools (see [CIP87],[KB+90b]). Nevertheless transformational program development is not automaticprogramming. The designer still plays an important role: he has to check thevalidity of application conditions. Furthermore, although it is desirable that thereis a considerable number of prede�ned transformation rules available, from time totime he may �nd it necessary to develop new transformations appropriate for hiscurrent problem. A complete automatic translation would be possible if we can�nd a transformation strategy that is universally applicable. Here many questionsremain to be solved.

www.manaraa.com

61
Chapter 5ConclusionFocus is not a syntactically �xed formalism but rather a collection of mathemat-ical models, logical concepts and rules centered around the idea of descriptive,functional system modelling based on the notion of streams. Much more work hasbeen done in this area than has been presented in the previous chapters. Theyare intended to give a rather informal basic introduction to Focus. Much morework needs to be done to explore the potentials and limitations especially fromthe practical point of view.It was the goal of this presentation to demonstrate a formal framework for thesystematic development of information processing systems.

www.manaraa.com

62 6. Glossary
Chapter 6GlossaryAction: Indivisible unit of activity (at the considered abstraction level).Agent: Component of a system modelled by a set of stream processing functions.AL: Applicative language for the representation of abstract programs allowingthe de�nition of streams and stream processing functions.Algebraic speci�cation: Property oriented speci�cation of a data structure andrelated operations using axioms (mostly conditional equations).Bottom-up step: Development step by which a more concrete system descrip-tion is related to more abstract one (for instance by veri�cation step).Communication: Exchange of messages.Component: Subsystem of a system: in Focus a component communicates viaits interface with its environment; the interface is given in terms of theinput/output-behaviour of the component. In the design phase a componentis modelled by a set of stream processing functions.Component-oriented speci�cation: (Trace) speci�cation of a system struc-tured into components.Denotational semantics: Approach to program semantics that assigns mathe-matical objects (e.g. functions) to syntactical entities in order to describetheir meaning.Distribution: Spatial or conceptual decomposition of a system.Interaction: Causality between actions (especially send and receive actions) ofdistributed system components.Global speci�cation: (Trace) speci�cation of the whole closed system withoutexplicitly referring to particular system components.

www.manaraa.com

63Implementation relation: Relation between two system descriptions one beingmore abstract the other one being more concrete.Liveness property: Property of a system of a form that misbehaviour with re-spect to this property cannot be �nitely observed (cannot be observed justby looking at �nite pre�xes of a trace).Nondeterminism: Freedom of choice between several behaviours of a system inan instantiation without possibility to inuence this choice by the environ-ment.Network: Collection of agents connected by communication channels.PL: Procedural language for the representation of concrete channels based onimperative constructs and asynchronous channels.Port: Name for an input or output channel of an agent.Process: Instantiation (run) of a system or system component.Re�nement: Replacing a system description by one containing possibly moredetails.Safety property: Property of a system of a form that misbehaviour of a systemwith respect to this property can be �nitely observed (by looking at �nitepre�xes of traces).State: Representation of the relevant aspects of a �nite history of a system bysome element from a mathematical set (called the state space).Stream: Finite or in�nite sequence of elements; used for communication channels,histories of actions by traces, or histories of states of state machines.System: Conceptual or technical distinguished structure with a dynamic be-haviour.Top-down step: Development step by which a more concrete system descriptionis derived from a more abstract one.Trace: Stream of actions modelling a process.Transformation Technique: Formal method of software development based onsemantics (correctness) preserving transformation rules.Veri�cation: Showing that a system description ful�ls its speci�cation by givinga formal proof.

www.manaraa.com

64 BIBLIOGRAPHY
Bibliography[BA81] J.D. Brock and W.B. Ackermann. Scenarios: A model of non-determinatecomputation. In J. D��az and I. Ramos, editors, Formalization of Program-ming Concepts, volume 107 of LNCS, pages 252{259. Springer, 1981.[Bar85] D. Barstow. Automatic programming for streams. In Proc. 9th Interna-tional Joint Conference on Arti�cial Intelligence, pages 232{237. 1985.[Bar88] D. Barstow. Automatic programming for streams II. In Proc. 10th Inter-national Conference on Software Engineering, pages 439{447. 1988.[BD77] R.M. Burstall and J. Darlington. A transformation system for developingrecursive programs. Journal of the ACM, 24(1):44{67, 1977.[BD92] M. Broy and C. Dendorfer. Modelling of operating system structures bytimed stream processing functions. Journal of Functional Programming,2(1):1{21, 1992.[BDD+92] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. F. Gritzner, andR. Weber. Summary of case studies in focus | a design method fordistributed systems. SFB-Report 342/3/92 A, Technische Universit�atM�unchen, January 1992.[BFG+92] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hu�mann, D. Nazareth,F. Regensburger, and K. Stolen. The Requirement and Design Spec-i�cation Language SPECTRUM, An Informal Introduction, Version0.3. Technical Report TUM-I9140, Technische Universit�at M�unchen, May1992.[BL90] T. Bemmerl and T. Ludwig. MMK | a distributed operating systemkernel with integrated dynamic loadbalancing. In H. Burkhard, editor,CONPAR '90 - VAPP IV, volume 457 of LNCS, pages 744{755. Springer,1990.[BL91] M. Broy and C. Lengauer. On denotational versus predicative semantics.Journal of Computer and System Sciences, 42(1):1{29, 1991.[Bro86] M. Broy. A theory for nondeterminism, parallelism, communication, andconcurrency. Theoretical Computer Science, 45:1{68, 1986.

www.manaraa.com

BIBLIOGRAPHY 65[Bro88a] M. Broy. An example for the design of a distributed system in a for-mal setting | the lift problem. Technical Report MIP 8802, Universit�atPassau, February 1988.[Bro88b] M. Broy. Nondeterminstic dataow programs: how to avoid the mergeanomaly. Science of Computer Programming, 10:65{85, 1988.[Bro89] M. Broy. Towards a design methodology for distributed systems. InM. Broy, editor, Constructive Methods in Computing Science, volume 55of NATO ASI Series F: Computer and System Sciences, pages 311{364.Springer, 1989.[Bro90] M. Broy. Functional speci�cation of time sensitive communicating sys-tems. In G.Rozenberg J.W. de Bakker, W.-P. de Roever, editor, Step-wise Re�nement of Distributed Systems: Models, Formalisms, Correct-ness, volume 430 of LNCS. Springer, 1990.[Bro92a] M. Broy. Compositional re�nement of interactive systems. Workingmaterial, International Summer School on Program Design Calculi, 1992.[Bro92b] M. Broy. (Inter-)action re�nement: The easy way. Working material,International Summer School on Program Design Calculi, 1992.[BW81] F.L. Bauer and H. W�ossner. Algorithmische Sprache und Programment-wicklung. Springer, 1981.[CIP85] The CIP Language Group. The Munich Procject CIP Vol. I: The WideSpectrum Language CIP-L, volume 183 of LNCS. Springer, 1985.[CIP87] The CIP System Group. The Munich Projekt CIP Vol. II: The ProgramTransformations System CIP-S, volume 292 of LNCS. Springer, 1987.[CM88] K.M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley,1988.[Ded90] F. Dederichs. System and environment: The philosophers revisited. Tech-nical Report TUM-I9040, Technische Universit�at M�unchen, October 1990.[Ded92] F. Dederichs. Transformation verteilter Systeme: Von applikativen zuprozeduralen Darstellungen. SFB-Report 342/17/92 A, Technische Uni-versit�at M�unchen, Technische Universit�at M�unchen, August 1992.[Den91] C. Dendorfer. Funktionale Modellierung eines Postsystems. SFB-Report342/28/91 A, Technische Universit�at M�unchen, November 1991.[DHR90] E. Dubois, J. Hagelstein, and A. Rifaut. ERAE: A formal language forexpressing and structuring real-time requirements. Draft Version, June1990.

www.manaraa.com

66 BIBLIOGRAPHY[DW92] C. Dendorfer and R. Weber. From service speci�cation to protocol entityimplementation | an exercise in focus. SFB-Report 342/4/92 A, Tech-nische Universit�at M�unchen, January 1992. Also to appear in: Proc. 12thsymposium on protocol speci�cation, testing, and veri�cation 1992.[Fea87] M.S. Feather. A survey and classi�cation of some transformation ap-proaches and techniques. In L.G.L.T. Meertens, editor, Program Speci�-cation and Transformation, pages 165{195. Elsevier, 1987.[Gor92] S. Gorlatch. Parallel program development for a recursive numerical al-gorithm: a case study. SFB-Report 342/7/92 A, Technische Universit�atM�unchen, March 1992.[HJW+91] P. Hudak, S. Peyton Jones, P. Wadler, et al. Report on the program-ming language Haskell, a non-strict purely functional language (version1.1). Technical Report YALEU/DCS/RR777, Yale University, Depart-ment of Computer Science, August 1991.[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.[Kah74] G. Kahn. The semantics of a simple language for parallel programming.In J. L. Rosenfeld, editor, Information Processing 74, pages 471{475.North-Holland, 1974.[KB+90a] B. Krieg-Br�uckner et al. PROgram development by SPECi�cationand TRAnsformation. vol. I (Methodology). PROSPECTRA ReportM.1.1.S3-R-55.2, Universit�at Bremen, 1990.[KB+90b] B. Krieg-Br�uckner et al. PROgram development by SPECi�cation andTRAnsformation. vol. III (System). PROSPECTRA Report M.1.1.S.3-R-57.2, Universit�at Bremen, 1990.[Kel78] R.M. Keller. Denotational models for parallel programs with indetermi-nate operators. In E.J. Neuhold, editor, Formal Description of Program-ming Concepts, pages 337{366. North Holland, 1978.[KM77] G. Kahn and D.B. MacQueen. Coroutines and networks of parallel pro-cesses. In B. Gilchrist, editor, Information Processing 77, pages 993{998.North-Holland, 1977.[LA90] L. Lamport and M. Abadi. Composing speci�cations. In G. RozenbergJ.W. de Bakker, W.-P. de Roever, editor, Stepwise Re�nement of Dis-tributed Systems: Models, Formalisms, Correctness, volume 430 of LNCS,pages 1{41. Springer, 1990.[Lam83] L. Lamport. Specifying concurrent program modules. ACM Transactionson Programming Languages and Systems, pages 190{222, 1983.

www.manaraa.com

BIBLIOGRAPHY 67[LS87] J. Loeckx and K. Sieber. The Foundations of ProgramVeri�cation. Wiley-Teubner, 2nd edition, 1987.[LS89] N. Lynch and E. Stark. A proof of the Kahn principle for input/outputautomata. Information and Computation, 82:81{92, 1989.[Man74] Z. Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.[Nue88] H. Nueckel. Eine Zeigerimplementierung von Graphreduktion f�ur eineDatenu�sprache. Universit�at Passau, 1988. Diploma Thesis.[Old91] E.-R. Olderog. Towards a design calculus for communicating programs.In J.C.M. Baeten and J.F. Groote, editors, CONCUR '91, volume 527 ofLNCS, pages 61{77. Springer, 1991.[Pan90] P. Pandya. Some comments on the assumption commitment frameworkfor compositional ver�cation of distributed programs. In G. RozenbergJ.W. de Bakker, W.-P. de Roever, editor, Stepwise Re�nement of Dis-tributed Systems: Models, Formalisms, Correctness, volume 430 of LNCS,pages 622{640. Springer, 1990.[Par90] H.A. Partsch. Speci�cation and Transformation of Programs. Texts andMonographs in Computer Science. Springer, 1990.[WA85] W. Wadge and E. Ashcroft. Lucid, the dataow programming language.Academic Press, 1985.[Web92] R. Weber. Eine Methodik f�ur die formale Anforderungsspezi�kationverteilter Systeme. SFB-Report 342/14/92 A, Technische Universit�atM�unchen, March 1992.

